Savoir Fd. 1: Exponentielle

Entraînement 1

1) On donne la fonction définie par $f(x) = (3-2x)e^x - e^{x^2-1}$.

 ${\it Calculer}\ f(1): en\ donner\ la\ valeur\ exacte\ le\ plus\ simplifiée\ possible,\ puis\ une\ valeur\ approchée\ au\ centième$

2) On donne les fonctions $g(x) = -2e^{1-3x}$ et $h(x) = (1-x^2)e^x$ Déterminer le tableau de signe de g sur \mathbb{R} et celui de h sur $[0; +\infty[$

Entraînement 2

- 1) Simplifier au maximum le nombre : $A=\frac{2e^{5-2^2}-e^{(1-2)^2}}{e^{1-(3-2)}}$, puis en donner une valeur approchée au centième.
- 2) On donne les fonctions $f(x) = (2x 6)e^{-x}$ et $g(x) = e^x + 2$ Déterminer le tableau de signe de f sur $[1; +\infty[$ et celui de g sur \mathbb{R}

Entraînement 3

- 1) Soit $A = \frac{3e^{2\times 3-6}+1}{e^{1-2}}$. Donner la valeur exacte la plus simple possible, puis une valeur approchée à 0,1 près
- 2) On donne les fonctions $h(x) = 2e^x 2$ et $k(x) = \frac{e^{1-x}}{x^2 3x + 2}$ Déterminer le tableau de signe de h sur \mathbb{R} et celui de k sur son domaine de définition

Entraînement 4

1) On donne la fonction $f(x) = \frac{e^{2x+4}}{e^{x+1} + e^{x+2}}$

Déterminer la valeur exacte de l'image de -2 par f (la plus simplifiée possible) puis une valeur approchée à 10^{-2} près.

2) On donne les fonctions $g(x) = 2x^2e^x + 1$ et $h(x) = xe^{-x}$ Déterminer le tableau de signe de g sur \mathbb{R} et celui de h sur [-2; 3]

Entraînement 5

1) On donne la fonction $\phi(x) = (e^{x-1} - x)(3 - e^{2-x})$

Déterminer la valeur exacte de l'image de 2 par ϕ (la plus simplifiée possible), puis une valeur approchée.

2) On donne les fonctions $f(x) = (1-2x)(e^x+2)$ et $g(x) = \frac{xe^x}{1-e^x}$ Déterminer le tableau de signe de f sur $]-\infty$; 1] et celui de g sur son domaine de définition

Corrections Savoir Fd. 1

Corrigé Entraînement n°1

1)
$$f(1) = (3-2)e^1 - e^{1^2-1} = e - e^0 = e - 1 \approx 1,72$$

2)	x	8	+∞
	-2	_	
	e^{1-3x}	+	
	g(x)	_	

x	0	1		+∞
$\begin{array}{c} 1 \\ -x^2 \end{array}$	+	0	_	
e^{x}	+		+	
h(x)	+	0	_	

Corrigé Entraînement 2

1)
$$A = \frac{2e^{5-2^2} - e^{(1-2)^2}}{e^{1-(3-2)}} = \frac{2e^{5-4} - e^{(-1)^2}}{e^{1-1}} = \frac{2e^1 - e^1}{e^0} = \frac{2e - e}{1} = e \simeq 2,72$$

La fonction g(x) est la somme de deux termes strictement positifs, une exponentielle (toujours positive) et 2

х	-∞	+∞
g(x)	+	=

Corrigé Entraînement 3

1)
$$A = \frac{3e^{2\times 3-6}+1}{e^{1-2}} = \frac{3e^0+1}{e^{-1}} = \frac{3+1}{\frac{1}{e}} = 4e \approx 10,9$$

2)
$$h(x) = 2(e^x - 1)$$

$$\begin{array}{c|ccccc} x & -\infty & 0 & +\infty \\ \hline 2 & + & | & + \\ e^x & -1 & - & 0 & + \\ h(x) & - & \mathbf{0} & + \\ \end{array}$$

X	-∞		1		2		+∞
e^{1-x}		+		+		+	
$x^2 - 3x + 2$		+	0	_	0	+	
1()		_	- 1 1				

Pour $k : \Delta = 1$; $x_1 = 2$; $x_2 = 1$

Corrigé Entraînement 4

1)
$$f(-2) = \frac{e^{-4+4}}{e^{-2+1} + e^{-2+2}} = \frac{e^0}{e^{-1} + e^0} = \frac{1}{\frac{1}{e} + 1} = \frac{1}{\frac{1+e}{e}} = \frac{e}{1+e} \simeq 0,73$$

2) Comme $x^2 \ge 0$ et $e^x > 0$, on a par produit $x^2 e^x \ge 0$ et donc $x^2 e^x + 1 \ge 1 > 0$

(*g* somme d'un terme positif et d'un terme strictement positif)

х	-∞	+∞
g(x)	+	

x	-2		0		3
х		_	0	+	
e^{-x}		+		+	
h(x)		_	0	+	

Corrigé Entraînement 5

1)
$$f(x) = (e^{2-1} - 2)(3 - e^{2-2}) = (e - 2)(3 - 1) = 2(e - 2) \approx 1,44$$

2) Pour f: le facteur $(e^x + 2)$ est une somme de deux termes strictement positifs, donc est strictement positif

х	-∞		<u>1</u> 2		1
1-2x		+	0	_	
$e^{x} + 2$		+		+	
f(x)		+	0	_	

X	-∞		0		+∞
х		_	0	+	
e^x		+		+	
$1-e^x$		+	0	-	
g(x)		_		_	