
Sujet n°3

Exercice nº1

On a tracé ci-dessous la courbe représentative ${\mathcal C}$ d'une fonction f .

Partie A : Fonction f

- **1. a.** Quel est l'ensemble de définition de la fonction f ?
 - **b**. Quels sont les extrema de la fonction f sur son ensemble de définition ?
 - **c.** Déterminer f(8)
 - **d.** Résoudre graphiquement l'équation f(x) = -4
 - **e.** Quel est le sens de variation de la fonction f sur l'intervalle [5; 9] ?
- **2. a.** Construire le tableau de variation de la fonction f sur l'intervalle [-5, 6]
 - **b.** Pour $x \in [-7; 0]$, donner un encadrement de la fonction f

Partie B : Fonction g

On donne la fonction g, définie sur [-7; 9] par : $g(x) = 15 \times \frac{-2x+1}{x^2+2}$

On donne ci-dessous le tableau de variation de la fonction g

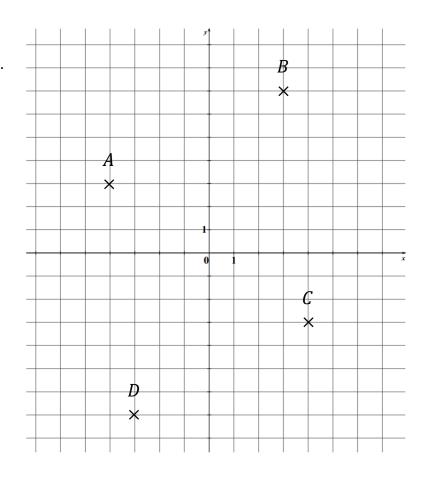
х	-7		-1		2		10
g(x)		7		7		7	:

- **a.** Calculer g(-1) en donnant les étapes de calcul
- b. Compléter le reste du tableau à l'aide de la calculatrice (valeur approchée au dixième près)

Partie C : Fonction h

On donne la fonction h, définie aur \mathbb{R} par h(x) = 2x(x-3) - (x+1)(2x-4)

1. Développer et réduire h(x)


Pour les questions suivantes, on prendra pour h la formule h(x) = -4x + 4

- **2. a.** Calculer $h\left(-\frac{2}{3}\right)$ en donnant les étapes de calculs et en donnant le résultat sous sa forme irréductible.
 - **b.** Déterminer le sens de variation de la fonction h. Justifier
 - ${f c.}$ Déterminer algébriquement l'antécédent de -2 par la fonction h

Exercice nº 2

On se place dans un repère orthonormé (0, I, J).

- **1.** Déterminer les coordonnées des points *A*, *B*, *C* et *D*
- **2.** (a) Déterminer graphiquement les coordonnées du vecteur \overrightarrow{BA}
- **(b)** Déterminer <u>par le calcul</u> les coordonnées du vecteur \overrightarrow{CD}
- (c) En déduire la nature du quadrilatère ABCD
- **3.** Calculer la valeur exacte de la longueur AC
- **4.** Déterminer par le calcul les coordonnées du point E, milieu du segment [AD]
- **5.** On donne $AB = \sqrt{65}$ et $BC = \sqrt{101}$. Le triangle ABC isocèle ? Justifier.

Exercice nº3

Une société possède deux sites de production qui emploient des salariés avec différents statuts : des CDI (contrat à durée indéterminée), des CDD (contrat à durée déterminée) et des stagiaires.

Tous les salariés en CDI et tous les salariés du site de production B sont convoqués à une réunion à Paris.

On donne la composition du personnel des deux sites dans le tableau suivant :

	CDI	CDD	Stagiaires
Site de production A	315	106	23
Site de production B	52	16	18

On choisit au hasard un salarié de cette société.

On définit les évènements suivants :


- A : « Le salarié choisi travaille sur le site de production A ».
- *I* : « Le salarié choisi est embauché en CDI ».
- D : « Le salarié choisi est embauché en CDD ».
- S: « Le salarié choisi est stagiaire ».

On arrondira les probabilités demandées à 0,1% près.

- 1. Quelle est la probabilité que le salarié choisi soit embauché en CDI ?
- **2.** Calculer $p(A \cap D)$. Interpréter ce résultat.
- **3.** Calculer $p(\bar{S})$. Interpréter ce résultat.
- 4. Quelle est la probabilité que le salarié choisi soit convoqué à une réunion à Paris ?
- 5. Le dirigeant de la société hésite encore à propos de cette réunion à Paris. Il tire 3 fois de suite à pile ou face.

On note P l'événement « la pièce tombe sur pile » et F « la pièce tombe sur face ».

- a. Tracer l'arbre de probabilité modélisant ces trois tirages.
- **b.** Quelle est la probabilité que le dirigeant obtienne 3 fois face ?
- **c.** Le dirigeant se dit que, s'il obtient 2 fois face ou plus, il annule la réunion à Paris. Quelle est la probabilité que la réunion soit annulée ?

Corrigé Exercice nº1

Partie A

- **1. a.** $\mathcal{D}_f = [-7; 9[$
 - **b**. le minimum de f est -10 et son maximum est 14

c.
$$f(8) = 12$$

d.
$$S = \{-6; -1\}$$

e. f est croissante sur [5; 7] et décroissante sur [7; 9]

2. a.

х	-5		-4		6
f(x)	-8	7	-10	7	12

b.
$$-10 \le f(x) \le 0$$

Partie B

a.
$$g(-1) = 15 \times \frac{-2 \times (-1) + 1}{(-1)^2 + 2} = 15 \times \frac{2 + 1}{1 + 2} = 15 \times \frac{3}{3} = 15$$

x	-7		-1		2		10
g(x)	4,4	7	15	7	-7,5	7	-2,8

Partie C

1.
$$h(x) = 2x(x-3) - (x+1)(2x-4)$$

$$h(x) = 2x^2 - 6x - (2x^2 - 4x + 2x - 4)$$

$$h(x) = 2x^2 - 6x - 2x^2 + 4x - 2x + 4$$

$$h(x) = -4x + 4$$

2. a. Calculer
$$h\left(-\frac{2}{3}\right) = -4 \times \left(-\frac{2}{3}\right) + 4 = \frac{8}{3} + 4 = \frac{8}{3} + \frac{12}{3} = \frac{20}{3}$$

b. h est une fonction affine dont le coefficient directeur est -4, donc négatif : la fonction est décroissante

$$\mathbf{c.}\ h(x) = -2 \iff -$$

$$\Leftrightarrow -4x + 4 = -2$$

$$\Leftrightarrow -4x = -2 - 4 = -6$$

$$\Leftrightarrow x = \frac{-6}{-4} = \frac{3}{2}$$

 $\Leftrightarrow x = \frac{-6}{-4} = \frac{3}{2}$ donc l'antécédent de -2 est $\frac{3}{2}$

Corrigé Exercice nº 2

1.
$$A(-4;3)$$
; $B(3;7)$; $C(4;-3)$ et $D(-3;-7)$

2. (a)
$$\overrightarrow{BA} \begin{pmatrix} -7 \\ -4 \end{pmatrix}$$
 (b) $\overrightarrow{CD} \begin{pmatrix} x_D - x_C \\ y_D - y_C \end{pmatrix} = \begin{pmatrix} -3 - 4 \\ -7 - (-3) \end{pmatrix} = \begin{pmatrix} -7 \\ -7 + 3 \end{pmatrix} = \begin{pmatrix} -7 \\ -4 \end{pmatrix}$

(c) On a
$$\overrightarrow{BA} = \overrightarrow{CD}$$
 donc le quadrilatère $ABCD$ est un parallélogramme

3.
$$AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2}$$

 $AC = \sqrt{(4 - (-4))^2 + (-3 - 3)^2}$
 $AC = \sqrt{(4 + 4)^2 + (-6)^2}$
 $AC = \sqrt{8^2 + 36}$
 $AC = \sqrt{64 + 36} = \sqrt{100} = 10$

4. Déterminer par le calcul les coordonnées du point
$$E$$
, milieu du segment $[BD]$

$$x_E = \frac{x_A + x_D}{2} = \frac{-4 - 3}{2} = \frac{-7}{2}$$
 et $y_E = \frac{y_A + y_D}{2} = \frac{3 - 7}{2} = \frac{-4}{2} = -2$
Le milieu de $[BD]$ a pour coordonnées $E\left(-\frac{7}{2}; -2\right)$

5. Non, car les 3 côtés ont des longueurs différentes, et même si
$$CA$$
 et CB sont très proches, elles ne sont pas égales

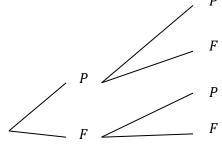
Corrigé Exercice n°3

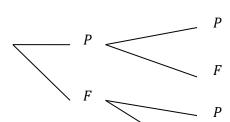
On s'aide du tableau complété avec les totaux :

	CDI	CDD	Stagiaires	Total
Site de production A	315	106	23	444
Site de production B	52	16	18	86
Total	367	122	41	530

1.
$$p(I) = \frac{367}{530} \approx 0,692$$
 II y a 69,2% de chances que le salarié soit en CDI.

2.
$$p(A \cap D) = \frac{106}{530} = 0,2$$
. Il y a 20% de chances (ou 1 chance sur 5) que le salarié soit en CDD sur le site A.


3.
$$p(\bar{S}) = \frac{367+122}{530} \simeq 0,922$$
 II y a 92,2% de chances que le salarié ne soit pas un stagiaire.


4.
$$p(I \cup \bar{A}) = p(I) + p(\bar{A}) - p(I \cap \bar{A}) = \frac{367 + 86 - 52}{530} = \frac{401}{530} \approx 0,757.$$

Il y a 75,7% de chances que le salarié soit convoqué.

b. $p(FFF) = \frac{1}{8}$. If y a une chance sur 8 (12,5%) qu'il obtienne 3 fois face.

c. Pour obtenir 2 fois face ou plus, il peut obtenir : PFF ou FPF ou FFP ou FFP. Il y a donc 4 chances sur 8 (une chance sur deux) qu'il annule la réunion.

