Entraînement bac - Exponentielles et logarithmes

Exercice n°1 - (Centres étrangers - juin 2021 - Modifié)

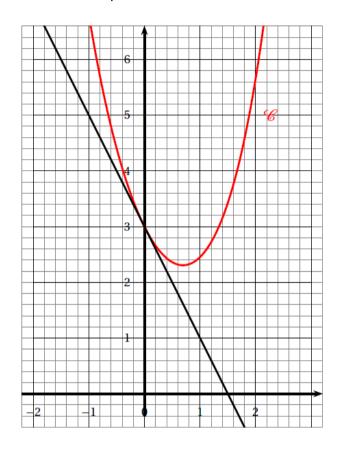
Partie A

On considère la fonction f définie sur \mathbb{R} par : $f(x) = e^x + ax + be^{-x}$

où a et b sont des nombres réels que l'on propose de déterminer dans cette partie.

Dans le plan muni d'un repère d'origine O, on a représenté ci-contre la courbe $\mathcal C$, représentant la fonction f, et la tangente ($\mathcal T$) à la courbe $\mathcal C$ au point d'abscisse 0.

- **1.** Par lecture graphique, donner les valeurs de f(0) et de f'(0).
- **2.** En utilisant l'expression de la fonction f, exprimer f(0) en fonction de b et en déduire la valeur de b.
- **3.** On admet que la fonction f est dérivable sur \mathbb{R} et on note f' sa fonction dérivée.
 - **a.** Donner, pour tout réel x, l'expression de f'(x).
 - **b.** Exprimer f'(0) en fonction de a.
 - **c.** En utilisant les questions précédentes, déterminer a, puis en déduire l'expression de f(x).



Partie B

Soit g la fonction définie sur $\mathbb R$ par : $g(x) = e^x - x + 2e^{-x}$

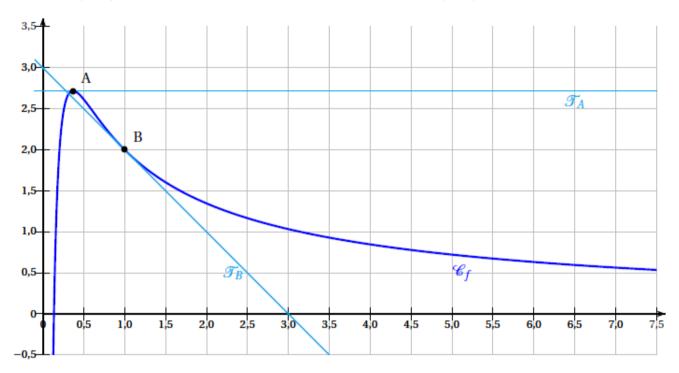
- **1.** Vérifier que pour tout réel x, on a : $e^{2x} e^x 2 = (e^x 2)(e^x + 1)$
- **2.** En déduire une expression factorisée de g'(x), pour tout réel x.
- **3.** Étudier le sens de variation de la fonction g sur $\mathbb R$

Exercice nº 2 - (Sujet «0» - 2020)

Sur le graphique ci-dessous, on a représenté dans un repère orthonormé :

- la courbe représentative \mathcal{C}_f d'une fonction f définie et dérivable sur]0; $+\infty[$;
- la tangente \mathcal{T}_A à la courbe \mathcal{C}_f au point A de coordonnées $\left(\frac{1}{e};e\right)$
- la tangente T_B à la courbe C_f au point B de coordonnées (1; 2).

La droite \mathcal{T}_A est parallèle à l'axe des abscisses. La droite \mathcal{T}_B coupe l'axe des abscisses au point de coordonnées (3; 0) et l'axe des ordonnées au point de coordonnées (0; 3).



On note f^\prime la fonction dérivée de f .

PARTIE I

- **1.** Déterminer graphiquement les valeurs de $f'\left(\frac{1}{e}\right)$ et de f'(1)
- **2.** En déduire une équation de la droite $\,\mathcal{T}_{\!B}\,$.

PARTIE II

On suppose maintenant que la fonction f est définie sur]0; $+\infty[$ par : $f(x)=\frac{2+\ln x}{x}$

- **1.** Par le calcul, montrer que la courbe C_f passe par les points A et B et qu'elle coupe l'axe des abscisses en un point unique que l'on précisera.
- **2.** Déterminer la limite de f(x) quand x tend vers 0 par valeurs supérieures, et la limite de f(x) quand x tend vers $+\infty$.
- **3.** Montrer que, pour tout $x \in]0$; $\infty[$, $f'(x) = \frac{-1 \ln x}{x^2}$
- **4.** Dresser le tableau de variations de f sur]0; $+\infty[$.
- **5.** On note f'' la fonction dérivée seconde de f. On admet que, pour tout $x \in]0$; $+\infty[$, $f''(x) = \frac{1+2\ln x}{x^3}$ Déterminer le plus grand intervalle sur lequel f est convexe.

Exercice n°3 - (Amérique du Nord juin 21)

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. On justifiera chaque réponse.

Affirmation 1: Pour tous réels a et b, $(e^{a+b})^2 = e^{2a} + e^{2b}$

Affirmation 2: Dans le plan muni d'un repère, la tangente au point A d'abscisse 0 à la courbe représentative de la fonction f définie sur \mathbb{R} par $f(x) = -2 + (3-x)e^x$ admet pour équation réduite y = 2x + 1.

Affirmation 3:
$$\lim_{x \to +\infty} e^{2x} - e^x + \frac{3}{x} = 0$$

Affirmation 4: L'équation $1 - x + e^{-x} = 0$ admet une seule solution appartenant à l'intervalle [0; 2].

Affirmation 5: La fonction g définie sur \mathbb{R} par $g(x) = x^2 - 5x + e^x$ est convexe.

Exercice nº4 - (Métropole - mars 21)

Partie I : Étude d'une fonction auxiliaire

Soit g la fonction définie sur]0; $+\infty[$ par : $g(x) = \ln(x) + 2x - 2$.

- **1.** Déterminer les limites de g en $+\infty$ et 0.
- **2.** Déterminer le sens de variation de la fonction g sur]0; $+\infty[$.
- **3.** Démontrer que l'équation g(x) = 0 admet une unique solution α sur]0; $+\infty[$.
- **4.** Calculer g(1) puis déterminer le signe de g sur]0; $+\infty[$.

Partie II : Étude d'une fonction f

On considère la fonction f , définie sur]0; $+\infty[$ par : $f(x) = \left(2 - \frac{1}{x}\right)(\ln(x) - 1)$

1. a. On admet que la fonction f est dérivable sur]0; $+\infty[$ et on note f' sa dérivée.

Démontrer que, pour tout x de]0; $+\infty[$, on a : $f'(x) = \frac{g(x)}{x^2}$

- **b.** Dresser le tableau de variation de la fonction f sur]0; $+\infty[$. Le calcul des limites n'est pas demandé.
- **2.** Résoudre l'équation f(x) = 0 sur]0; $+\infty[$ puis dresser le tableau de signes de f sur l'intervalle]0; $+\infty[$.

Partie III : Étude d'une fonction F admettant pour dérivée la fonction f

On admet qu'il existe une fonction F dérivable sur]0; $+\infty[$ dont la dérivée F' est la fonction f . Ainsi, on a : F'=f .

On note C_F la courbe représentative de la fonction F dans un repère orthonormé $(0,\vec{l},\vec{j})$. On ne cherchera pas à déterminer une expression de F(x).

- **1.** Étudier les variations de F sur]0; $+\infty[$.
- **2.** La courbe C_F représentative de F admet-elle des tangentes parallèles à l'axe des abscisses ? Justifier la réponse.