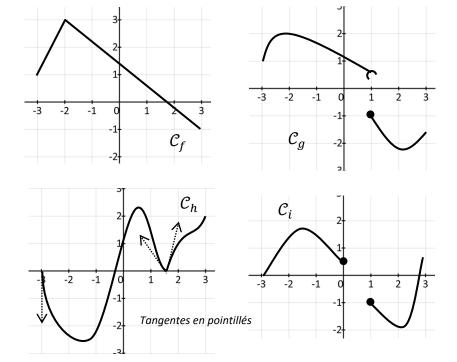
Savoirs Fc. 1 : Théorème des valeurs intermédiaires

Exercice 1: Continuité des fonctions

Pour chacune des fonctions représentées ci-dessous, donner les intervalles sur lesquels la fonction semble :

- b) continue?
- c) dérivable?



Exercice 2: Théorème des Valeurs Intermédiaires (TVi) - à partir de tableaux

1) On donne le tableau de variation de f Déterminer le nombre de solutions des équations suivantes (et donner, quand c'est possible, le plus petit intervalle auquel elles appartiennent)

a)
$$f(x) = 3$$

b)
$$f(x) = -2$$

c)
$$f(x) = 4$$

b)
$$f(x) = -2$$
 c) $f(x) = 4$ **d)** $f(x) = -6$

х	-7	-2	1		4
		4	→ 4		
f(x)		7		7	
	-3				0

2) On considère la fonction f définie sur par : $f(x) = e^{0.1x^2} - 2$. On donne ci-dessous son tableau de variation sur [-10; 2].

х	-10		0		2
f(x)	$e^{10}-2$	7	-1	7	$e^{0,4}-2$

- a) Montrer que l'équation f(x) = 2 n'a qu'une seule solution α sur l'intervalle [-10; 2].
 - b) Déterminer une valeur approchée à $10^{-2}\,$ de cette solution $\alpha.$

Un peu plus...

3) On considère la fonction f définie sur par : $f(x) = 3 + (x + 1)e^{2x}$.

On donne ci-contre son tableau de variation sur l'intervalle [0; 5].

$$f(x) = \begin{cases} x & 0 & 5 \\ 4 & 7 & 3 + 6e^{10} \end{cases}$$

- a) Montrer que l'équation f(x) = 9n'a qu'une seule solution α sur l'intervalle [0; 5].
- b) Déterminer une valeur approchée à 10^{-2} de cette solution α .

Exercice 3: Théorème des Valeurs Intermédiaires (TVi) - à partir de fonctions

1) On considère la fonction f définie sur [0;1] par :

$$f(x) = x^3 - 3x^2 + 1$$

- a) Calculer f(0) et f(1).
- **b)** Dériver f puis dresser le tableau de variation de f sur [0;1]
- **c)** En déduire le nombre de solutions de l'équation f(x) = 0 sur l'intervalle [0;1]
- **2)** Soit f la fonction définie sur [0;3] par $f(x) = 1 + 2x \ln(1+x)$. On admet que la fonction f est croissante sur [0;3].
 - **a.** Montrer qu'il existe sur [0;3] une unique valeur α telle que : $f(\alpha)=6$
 - **b.** Donner une valeur approchée de lpha à 10^{-2} près.
- **3)** Soit la fonction f définie sur \mathbb{R} par : $f(x) = x^3 + 6x^2 + 9x + 3$
 - a) Déterminer son tableau de variation
 - **b)** Combien l'équation f(x) = 10 a-t-elle de solutions sur l'intervalle [-4 ; 1] ?
 - c) Discuter selon les valeurs de m du nombre de solution sur l'intervalle [-4 ; 1] de l'équation f(x) = m

Un peu plus...

4) Soit h la fonction définie sur \mathbb{R}^* par

$$h(x) = x + \frac{1}{x}$$

Démontrer qu'il existe un unique nombre α dans $\left[\frac{1}{4};4\right]$ tel que $h(\alpha)=3$

En donner une valeur approchée au $10^{\rm e}$.