Exercices Type Bac

Exercice 1

Un complexe cinématographique a ouvert ses portes en 2018 en périphérie d'une ville. En 2018, le complexe a accueilli 180 mille spectateurs. La gestionnaire du complexe prévoit une augmentation de 4 % par an de la fréquentation du complexe.

Soit n un entier naturel. On note u_n le nombre de spectateurs, en milliers, du complexe cinématographique pour l'année (2018+n). On a donc $u_0 = 180$.

- **1.** Étude de la suite (u_n) .
 - a. Calculer le nombre de spectateurs en 2019.
 - **b.** Justifier que la suite (u_n) est géométrique. Préciser sa raison.
 - **c.** Exprimer u_n en fonction de n, pour tout entier naturel n.
- **2.** Un cinéma était déjà installé au centre-ville. En 2018, il a accueilli 260 000 spectateurs. Avec l'ouverture du complexe, le cinéma du centre-ville prévoit de perdre 10 000 spectateurs par an. Pour n, entier naturel, on note v_n le nombre de spectateurs, en milliers, accueillis dans le cinéma du centre-ville l'année (2018+n). On a donc $v_0 = 260$.
 - **a.** Quelle est la nature de la suite (v_n) ?
 - **b.** Justifier les sens de variations des suites (u_n) et (v_n)
 - **c.** Selon ces modèles, à partir de quelle année le nouveau complexe cinématographique verrait le nombre de ses spectateurs dépasser celui du cinéma de centre-ville ?

Exercice 2

Une balle en caoutchouc est lâchée sans vitesse initiale d'une hauteur de 2 mètres au-dessus du sol. Le choc n'étant pas parfaitement élastique, la balle rebondit jusqu'à une hauteur de 1,60 mètre et continue à rebondir, en atteignant après chaque rebond une hauteur égale au $\frac{4}{5}$ de la hauteur du rebond précédent.

On modélise les hauteurs atteintes par la balle par une suite (h_n) où pour tout entier naturel n, h_n est la hauteur, exprimée en mètres, atteinte par la balle au n-ième rebond.On a alors $h_0=2$.

- **1. a.** Donner h_1 et h_2 .
 - **b.** Pour tout entier naturel n, exprimer h_{n+1} en fonction de h_n .
 - **c.** En déduire la nature de la suite (h_n) . On précisera sa raison et son premier terme.
 - **d.** Déterminer le sens de variation de la suite (h_n) .
- **2.** Déterminer le nombre minimal N de rebonds à partir duquel la hauteur atteinte par la balle est inférieure à 20 cm. Expliquer la démarche employée.
- 3. Ce modèle prévoit-il que la balle cesse de rebondir ? Justifier mathématiquement votre réponse.

Exercice 3

Un journal hebdomadaire est sur le point d'être créé. Une étude de marché aboutit à deux estimations différentes concernant le nombre de journaux vendus :

- 1re estimation : 1 000 journaux vendus lors du lancement, puis une progression des ventes de 3 % chaque semaine.
- 2e estimation : 1 000 journaux vendus lors du lancement, puis une progression régulière de 40 journaux supplémentaires vendus chaque semaine.

On considère les suites (u_n) et (v_n) telles que, pour tout entier naturel $n \ge 1$, u_n représente le nombre de journaux vendus la n-ième semaine selon la première estimation et v_n représente le nombre de journaux vendus la n-ième semaine selon la deuxième estimation.

Ainsi, $u_1 = v_1 = 1000$.

1. On considère la feuille de calcul ci-contre :

Quelle formule, saisie en B3 et recopiée vers le bas, permet d'obtenir les termes de la suite (u_n) ?

	A	В	С	
1	n	u_n	v_n	
2	1	1 000	1000	
3	2	1 030	1040	
4	3	1 060,9	1 080	
5	4	1 092,727	1120	

- **2. a.** Donner la nature de la suite (u_n) puis celle de la suite (v_n) . Justifier.
 - **b.** Montrer que pour tout entier naturel $n \ge 1$: $v_n = 960 + 40n$.
 - **c.** Écrire, pour tout entier naturel $n \geq 1$, l'expression de u_n en fonction de n.
- **3.** On définit, pour tout entier $n \ge 1$, la suite (w_n) par $w_n = v_n u_n$. On donne ci-dessous un extrait de son tableau de valeurs :

n	1	2	19	20	21	22
w_n	0	10	18	6	-6	-20

À partir de quelle semaine le nombre de journaux vendus d'après la première estimation devient-il supérieur au nombre de journaux vendus d'après la deuxième estimation ?

Exercice 4

Aujourd'hui les chardons (une plante vivace) ont envahi 300 m² des champs d'une région.

Chaque semaine, la surface envahie augmente de 5 % par le développement des racines, auquel s'ajoutent 15 m² suite à la dissémination des graines.

Pour tout entier naturel n, on note u_n la surface envahie par les chardons, en ${\bf m}^{\bf 2}$, après n semaines; on a donc $u_0=300$.

- **1. a.** Calculer u_1 et u_2 .
 - **b.** Montrer que la suite (u_n) ainsi définie, n'est ni arithmétique ni géométrique.

On admet dans la suite de l'exercice que, pour tout entier naturel $n: u_{n+1} = 1,05u_n + 15$.

- **2.** On considère la suite (v_n) , définie pour tout entier naturel n, par : $v_n = u_n + 300$.
 - **a.** Calculer v_0 , puis montrer que la suite (v_n) est géométrique de raison q=1,05.
 - **b.** Pour tout entier naturel n, exprimer v_n en fonction de n, puis montrer que $u_n = 600 \times 1,05^n 300$
- **3.** Est-il correct d'affirmer que la surface envahie par les chardons aura doublé au bout de huit semaines ? Justifier la réponse.

Exercice 5

En 1995, le taux de scolarisation des jeunes de 18 ans atteignait 84,8 %, du fait d'une forte progression de la poursuite d'études dans le second cycle général et technologique jusqu'au baccalauréat.

Une étude de l'INSEE montre que ce taux de scolarisation a régulièrement diminué au cours des dix années suivantes.

On considère que la diminution du taux de scolarisation à 18 ans est chaque année de 1 % à partir de 1995.

Pour tout entier naturel n, on modélise le taux de scolarisation des jeunes de 18 ans en 1995 +n, par une suite (u_n) ; ainsi $u_0 = 84.8$.

- 1. Quel est le taux de scolarisation des jeunes âgés de 18 ans en 1996 ?
- **2.** Déterminer, en justifiant, la nature de la suite (u_n)
- 3. Résoudre $u_n \leq 80$ et interpréter le résultat dans le contexte de l'exercice.
- **4.** Exprimer, pour tout entier naturel n, u_n en fonction de n.
- 5. Quel est le taux de scolarisation des jeunes de 18 ans en 2005 ?