Savoir Fr. 6: Tableaux de signes

Entraînement n°1

1) Déterminer le tableau de signe sur \mathbb{R} de la fonction f définie par :

$$f(x) = (1 - x^2)e^x$$

2) Résoudre :
$$\frac{2x-6}{e^{-2x}} < 0$$

Entraînement n°2

1) Déterminer le tableau de signe sur $[0; +\infty[$ de la fonction g définie par :

$$g(x) = \frac{e^{1-x}}{x^2 - 3x + 2}$$

2) Résoudre :
$$2x e^{3-x^2} \le 0$$

Entraînement n°3

1) Déterminer le tableau de signe sur[-3; 2] de h définie par :

$$h(x) = (x^2 + 2x - 3)e^{3-x}$$

 $h(x) = (x^2 + 2x - 3)e^{3-x}$ 2) Résoudre : $\frac{-4x^2 + 14x - 10}{e^{-x^2 + 3x}} > 0$

Corrigé Savoir Fr. 6

Corrigé Entraînement n°1

1) Pour $1 - x^2 = (1 + x)(1x -)$ donc $x_1 = -1$ et $x_2 = 1$, négatif à l'extérieur des racines Une exponentielle est toujours positive

х	$-\infty$	-1		1	+∞
$1 - x^2$	_	0	+	0	_
e^x	+		+		+
f(x)	_	0	+	0	_

2) Une exponentielle est toujours positive

X	-∞		3		+∞
2x - 6		_	0	+	
e^{-x}		+		+	
$\frac{2x-6}{e^{-2x}}$		_	0	+	

Et donc $S =]-\infty; 3[$

Corrigé Entraînement n°2

1) Pour $x^2 - 3x + 2$, on a $\Delta = 1$, $x_1 = 1$ et $x_2 = 2$, positif à l'extérieur des racines Une exponentielle est toujours positive

x	0		1		2		+∞
e^{1-x}		+		+		+	
$x^2 - 3x + 2$		+	0	_	0	+	
g(x)		+	Ш	_	Ш	+	

2) Une exponentielle est toujours positive

x	-8		0		+∞
2 <i>x</i>		_	0	+	
e^{3-x^2}		+		+	
f'(x)		_	0	+	

Et donc $S =]-\infty; 0]$

Corrigé Entraînement n°3

1) Pour $x^2 + 2x - 3$, on a $\Delta = 16$, $x_1 = -3$ et $x_2 = 1$, positif à l'extérieur des racines Une exponentielle est toujours positive

h(x)	0	+	0	_	0	+	
e^{3-x}		- 1	i	1	T	1	
$x^2 + 2x - 3$	0	_		_	0	+	
x	-3		-1		1		2

2) On a $-4x^2 + 14x - 10$ on a $\Delta = 36$; $x_1 = 1$ et $x_2 = \frac{5}{2}$, négatif à l'extérieur des racines Une exponentielle est toujours positive

X	-∞	1		<u>5</u> 2	+∞
$-4x^2 + 14x - 10$	_	0	+	0	_
e^{-x^2+3x}	+		+		+
$\frac{-4x^2 + 14x - 10}{e^{-x^2 + 3x}}$	_	0	+	0	_

Et donc $S = \left[1; \frac{5}{2}\right]$