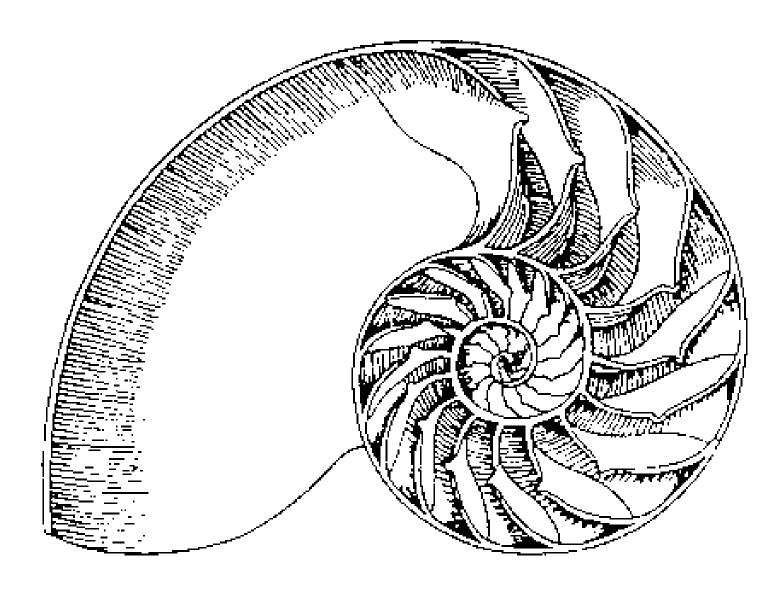
1ère Spé

Suites (2)



Savoirs Sag

Entraînements

Sujet de préparation

Savoir Sag. 5

Donner le sens de variation de chacune de ces suites.

- 1) (u_n) est une suite géométrique de 1^{er} terme $u_0 = 1500$ et de raison q = 0.59.
- 2) La suite (v_n) est définie par l'expression : $v_n = 500 \times \left(\frac{7}{3}\right)^{n-1}$
- 3) La suite (z_n) est définie par l'expression : $z_n = 12 8n$
- **4)** La suite (a_n) est définie par la relation de récurrence : $\begin{cases} a_n = \frac{a_{n-1}}{9} \\ a_1 = -236 \end{cases}$

Savoir Sag. 6

- 1) Une suite (a_n) est définie par son terme général : $a_n = 0.5n + 6$. Déterminer sa nature, sa raison et son 1^{er} terme Déterminer le rang à partir duquel le terme de cette suite sera au-delà de M = 63. Justifier.
- 2) Une suite (b_n) est définie par son terme général : $b_n=342\times 0.8^{n-1}$. Déterminer sa nature, sa raison et son 1^{er} terme Déterminer le rang à partir duquel le terme de cette suite sera au-delà de m=80. Justifier.

Savoir Sag. 7

Donner la limite de chacune de ces suites. Justifier.

- 1) La suite (a_n) est définie par l'expression : $a_n = 238 \times 0.92^{n-1}$
- 2) La suite (b_n) est définie par la relation de récurrence : $\begin{cases} b_{n+1} = \frac{7}{5} + b_n \\ b_1 = -25 \end{cases}$
- 3) (v_n) est une suite géométrique de 1^{er} terme $v_0=580$ et de raison q=2.6.
- **4)** La suite (s_n) est définie par la relation de récurrence : $\begin{cases} s_n = \frac{s_{n-1}}{4} \\ s_0 = 1500 \end{cases}$

Type bac

La population d'une ville A augmente chaque année de 2 %. La ville A avait 4 600 habitants en 2010. La population d'une ville B augmente de 110 habitants par année. La ville B avait 5 100 habitants en 2010.

Pour tout entier n, on note u_n le nombre d'habitants de la ville A et v_n le nombre d'habitants de la ville B à la fin de l'année 2010+n.

- 1. Calculer le nombre d'habitants de la ville A et le nombre d'habitants de la ville B à la fin de l'année 2011.
- **2.** Quelle est la nature des suites (u_n) et (v_n) ?
- **3.** Donner l'expression de u_n en fonction de n, pour tout entier naturel n et calculer le nombre d'habitants de la ville A en 2020.
- **4.** Donner l'expression de v_n fonction de n, pour tout entier naturel n et calculer le nombre d'habitants de la ville B en 2020.
- **5.** Déterminer au bout de combien d'années la population de la ville A dépasse celle de la ville B. Justifier.

Entraînements savoirs

Savoir Sag. 5: Sens de variation

Entraînement n°1

Donner le sens de variation de chacune de ces suites :

- 1) La suite (v_n) est définie par l'expression : $v_n = 260 \times 0.6^{n-1}$
- **2)** (C_n) est une suite arithmétique de 1^{er} terme $C_2 = -40$ et de raison R = 130.
- 3) La suite (a_n) est définie par la relation de récurrence : $\begin{cases} a_n = \frac{3a_{n-1}}{7} \\ a_1 = 25 \end{cases}$
- **4)** (u_n) est une suite géométrique de 1^{er} terme $u_0=-900$ et de raison q=1,5.

Entraînement n°2

Donner le sens de variation de chacune de ces suites.

- 1) La suite (t_n) est définie par l'expression : $t_n = 27 4(n-1)$
- 2) La suite (a_n) est définie par la relation de récurrence : $\begin{cases} a_{n+1} = \frac{5a_n}{3} \\ a_1 = 60 \end{cases}$
- 3) (b_n) est une suite géométrique de 1^{er} terme $b_0 = -20$ et de raison 0,7.
- **4)** La suite (c_n) est définie par l'expression : $c_n = -260 \times 1,05^{n-1}$

Entraînement n°3

Donner le sens de variation de chacune de ces suites. Justifier.

- 1) La suite (a_n) est définie par l'expression : $a_n = 238 \times 0.92^{n-1}$
- 2) La suite (b_n) est définie par la relation de récurrence : $\begin{cases} b_{n+1} = \frac{7}{5} + b_n \\ b_1 = -25 \end{cases}$
- 3) (v_n) est une suite géométrique de 1^{er} terme $v_0=580$ et de raison q=2.6.
- **4)** La suite (s_n) est définie par la relation de récurrence $s_n = \frac{s_{n-1}}{4}$ et le terme $s_0 = -1500$

Savoir Sag. 6 : Dépassement de seuil

Entraînement n°1

1) Une suite (u_n) est définie par son terme général : $u_n = 4000 \times 1.3^n$.

Déterminer sa nature, sa raison et son 1er terme

Déterminer le rang à partir duquel le terme de cette suite sera au-delà de la quantité M = 150 000.

2) Une suite (v_n) est définie par son terme général : $v_n = 256 - 3(n-1)$.

Déterminer sa nature, sa raison et son 1er terme

Déterminer le rang à partir duquel le terme de cette suite deviendra négatif. Justifier.

Entraînement n°2

- 1) Une suite (w_n) est définie par son terme général : $w_n = 7000 6n$. Déterminer sa nature, sa raison et son 1^{er} terme Déterminer le rang à partir duquel le terme de cette suite sera au-delà de la quantité M = 1200.
- 2) Une suite (z_n) est définie par son terme général : $z_n = 30 \times 1,7^{n-1}$. Déterminer sa nature, sa raison et son 1^{er} terme

Déterminer le rang à partir duquel le terme de cette suite sera au-delà de la quantité m = 1600. Justifier.

Entraînement n°3

- 1) Une suite (a_n) est définie par son terme général : $a_n = 1520 + 16n$. Déterminer sa nature, sa raison et son 1^{er} terme Déterminer le rang à partir duquel le terme de cette suite sera au-delà de la quantité M = 52 100.
- 2) Une suite (b_n) est définie par son terme général : $b_n = 3200 \times 0.93^{n-1}$. Déterminer sa nature, sa raison et son 1^{er} terme Déterminer le rang à partir duquel le terme de cette suite sera au-delà de la quantité m=1530. Justifier.

Savoir Sag. 7: Limites

Entraînement n°1

Donner la limite de chacune de ces suites.

1) La suite (t_n) est définie par l'expression : $t_n = 27 - 4(n-1)$

- 2) La suite (a_n) est définie par la relation de récurrence : $\begin{cases} a_{n+1} = \frac{5a_n}{3} \\ a_1 = 60 \end{cases}$
- 3) (b_n) est une suite géométrique de 1^{er} terme $b_0=-20$ et de raison q=0,7.
- **4)** La suite (c_n) est définie par la l'expression : $c_n = -260 \times 1,05^{n-1}$

Entraînement n°2

Donner la limite de chacune de ces suites.

- 1) La suite (v_n) est définie par la l'expression : $v_n = 260 \times 0.6^{n-1}$
- **2)** (C_n) est une suite arithmétique de 1^{er} terme $C_2 = -40$ et de raison R = 130.
- 3) La suite (a_n) est définie par la relation de récurrence : $\begin{cases} a_n = \frac{3a_{n-1}}{7} \\ a_1 = 25 \end{cases}$
- **4)** (u_n) est une suite géométrique de 1^{er} terme $u_0=-900$ et de raison q=1,5.

Entraînement n°3

Donner la limite de chacune de ces suites.

- 1) (u_n) est une suite géométrique de 1^{er} terme $u_0=1500$ et de raison q=0.59.
- 2) La suite (v_n) est définie par la l'expression : $v_n = 500 \times \left(\frac{7}{3}\right)^{n-1}$
- 3) La suite (z_n) est définie par la l'expression : $z_n = 12 8n$
- **4)** La suite (a_n) est définie par la relation de récurrence : $\begin{cases} a_n = \frac{a_{n-1}}{9} \\ a_1 = -236 \end{cases}$

Exercices Type Bac

Exercice 1

Un complexe cinématographique a ouvert ses portes en 2018 en périphérie d'une ville. En 2018, le complexe a accueilli 180 mille spectateurs. La gestionnaire du complexe prévoit une augmentation de 4 % par an de la fréquentation du complexe.

Soit n un entier naturel. On note u_n le nombre de spectateurs, en milliers, du complexe cinématographique pour l'année (2018+n). On a donc $u_0=180$.

- **1.** Étude de la suite (u_n) .
 - a. Calculer le nombre de spectateurs en 2019.
 - **b.** Justifier que la suite (u_n) est géométrique. Préciser sa raison.
 - **c.** Exprimer u_n en fonction de n, pour tout entier naturel n.
- **2.** Un cinéma était déjà installé au centre-ville. En 2018, il a accueilli 260 000 spectateurs. Avec l'ouverture du complexe, le cinéma du centre-ville prévoit de perdre 10 000 spectateurs par an. Pour n, entier naturel, on note v_n le nombre de spectateurs, en milliers, accueillis dans le cinéma du centre-ville l'année (2018+n). On a donc $v_0 = 260$.
 - **a.** Quelle est la nature de la suite (v_n) ?
 - **b.** Justifier les sens de variations des suites (u_n) et (v_n)
 - **c.** Selon ces modèles, à partir de quelle année le nouveau complexe cinématographique verrait le nombre de ses spectateurs dépasser celui du cinéma de centre-ville ?

Exercice 2

Une balle en caoutchouc est lâchée sans vitesse initiale d'une hauteur de 2 mètres au-dessus du sol. Le choc n'étant pas parfaitement élastique, la balle rebondit jusqu'à une hauteur de 1,60 mètre et continue à rebondir, en atteignant après chaque rebond une hauteur égale au $\frac{4}{5}$ de la hauteur du rebond précédent.

On modélise les hauteurs atteintes par la balle par une suite (h_n) où pour tout entier naturel n, h_n est la hauteur, exprimée en mètres, atteinte par la balle au n-ième rebond.On a alors $h_0=2$.

- **1. a.** Donner h_1 et h_2 .
 - **b.** Pour tout entier naturel n, exprimer h_{n+1} en fonction de h_n .
 - **c.** En déduire la nature de la suite (h_n) . On précisera sa raison et son premier terme.
 - **d.** Déterminer le sens de variation de la suite (h_n) .
- **2.** Déterminer le nombre minimal N de rebonds à partir duquel la hauteur atteinte par la balle est inférieure à 20 cm. Expliquer la démarche employée.
- 3. Ce modèle prévoit-il que la balle cesse de rebondir ? Justifier mathématiquement votre réponse.

Exercice 3

Un journal hebdomadaire est sur le point d'être créé. Une étude de marché aboutit à deux estimations différentes concernant le nombre de journaux vendus :

- 1re estimation : 1 000 journaux vendus lors du lancement, puis une progression des ventes de 3 % chaque semaine.
- 2e estimation : 1 000 journaux vendus lors du lancement, puis une progression régulière de 40 journaux supplémentaires vendus chaque semaine.

On considère les suites (u_n) et (v_n) telles que, pour tout entier naturel $n \ge 1$, u_n représente le nombre de journaux vendus la n-ième semaine selon la première estimation et v_n représente le nombre de journaux vendus la n-ième semaine selon la deuxième estimation.

Ainsi, $u_1 = v_1 = 1000$.

1. On considère la feuille de calcul ci-contre :

Quelle formule, saisie en B3 et recopiée vers le bas, permet d'obtenir les termes de la suite (u_n) ?

	A	В	С
1	n	u_n	ν_n
2	1	1 000	1000
3	2	1 030	1040
4	3	1 060,9	1080
5	4	1 092,727	1120

- **2. a.** Donner la nature de la suite (u_n) puis celle de la suite (v_n) . Justifier.
 - **b.** Montrer que pour tout entier naturel $n \ge 1$: $v_n = 960 + 40n$.
 - **c.** Écrire, pour tout entier naturel $n \geq 1$, l'expression de u_n en fonction de n.
- **3.** On définit, pour tout entier $n \ge 1$, la suite (w_n) par $w_n = v_n u_n$. On donne ci-dessous un extrait de son tableau de valeurs :

n	1	2	19	20	21	22
w_n	0	10	18	6	-6	-20

À partir de quelle semaine le nombre de journaux vendus d'après la première estimation devient-il supérieur au nombre de journaux vendus d'après la deuxième estimation ?

Exercice 4

Aujourd'hui les chardons (une plante vivace) ont envahi 300 m² des champs d'une région.

Chaque semaine, la surface envahie augmente de 5 % par le développement des racines, auquel s'ajoutent 15 m² suite à la dissémination des graines.

Pour tout entier naturel n, on note u_n la surface envahie par les chardons, en ${\bf m}^{\bf 2}$, après n semaines; on a donc $u_0=300$.

- **1. a.** Calculer u_1 et u_2 .
 - **b.** Montrer que la suite (u_n) ainsi définie, n'est ni arithmétique ni géométrique.

On admet dans la suite de l'exercice que, pour tout entier naturel $n: u_{n+1} = 1,05u_n + 15$.

- **2.** On considère la suite (v_n) , définie pour tout entier naturel n, par : $v_n = u_n + 300$.
 - **a.** Calculer v_0 , puis montrer que la suite (v_n) est géométrique de raison q=1,05.
 - **b.** Pour tout entier naturel n, exprimer v_n en fonction de n, puis montrer que $u_n = 600 \times 1,05^n 300$
- **3.** Est-il correct d'affirmer que la surface envahie par les chardons aura doublé au bout de huit semaines ? Justifier la réponse.

Exercice 5

En 1995, le taux de scolarisation des jeunes de 18 ans atteignait 84,8 %, du fait d'une forte progression de la poursuite d'études dans le second cycle général et technologique jusqu'au baccalauréat.

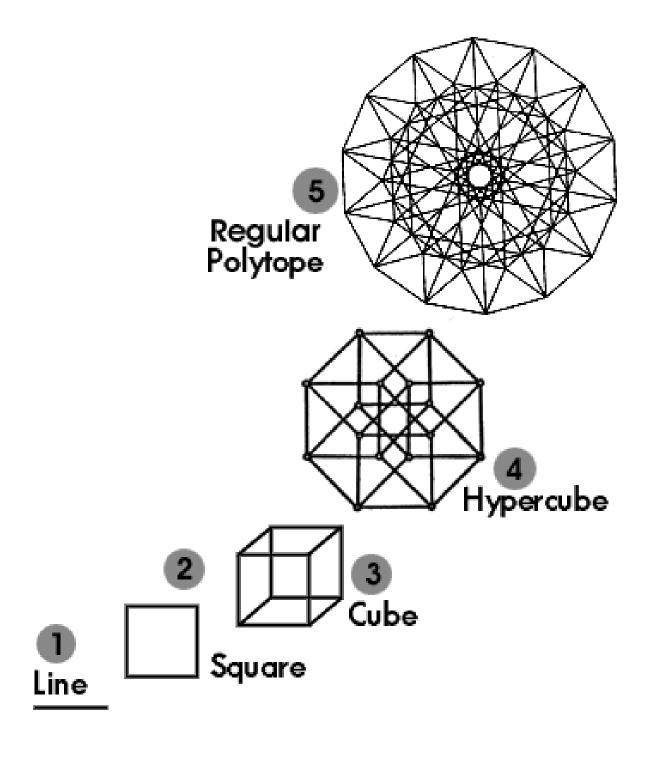
Une étude de l'INSEE montre que ce taux de scolarisation a régulièrement diminué au cours des dix années suivantes.

On considère que la diminution du taux de scolarisation à 18 ans est chaque année de 1 % à partir de 1995.

Pour tout entier naturel n, on modélise le taux de scolarisation des jeunes de 18 ans en 1995 +n, par une suite (u_n) ; ainsi $u_0 = 84.8$.

- 1. Quel est le taux de scolarisation des jeunes âgés de 18 ans en 1996 ?
- **2.** Déterminer, en justifiant, la nature de la suite (u_n)
- 3. Résoudre $u_n \leq 80$ et interpréter le résultat dans le contexte de l'exercice.
- **4.** Exprimer, pour tout entier naturel n, u_n en fonction de n.
- 5. Quel est le taux de scolarisation des jeunes de 18 ans en 2005 ?

Corrections



Sujet de préparation RECTION

Corrigé Savoir Sag. 5

- 1) (u_n) est une suite géométrique de 1^{er} terme positif et de raison $q \in [0; 1]$
- ⇒ La suite est décroissante
- **2)** La suite (v_n) est une suite géométrique de 1^{er} terme positif et de raison $q = \frac{7}{3} > 1$. La suite est **croissante**
- 3) La suite (z_n) est une suite arithmétique de 1^{er} terme $z_0=12$ et de raison négative R=-8 La suite est **décroissante**
- **4)** La suite (a_n) est une suite géométrique de 1^{er} terme négatif et de raison $q=\frac{1}{9}\in]0;1[$. La suite est **croissante**

Corrigé Savoir Sag. 6

égal à 63).

1) (a_n) est une suite arithmétique de 1^{er} terme $a_0=6$ et de raison positive : elle est **croissante**. Il s'agit donc de résoudre : $a_n>63 \iff 0.5n+6>63 \iff n>\frac{57}{0.5} \iff n>114$ a_n sera donc au-dessus de 63 à partir de n=115. (pour n=114, ce n'est pas « au-dessus », c'est

2) (b_n) est géométrique de 1^{er} terme $b_1=342$ et de raison $q=0.8 \in]0;1[$. Elle est donc **décroissante**. Il s'agit donc de résoudre : $b_n < 80$ A l'aide de la calculatrice, on détermine que : $b_7 > 80$ et $b_8 < 80$. b_n sera donc en-dessous de 80 **à partir du rang n=8**.

Corrigé Savoir Sag. 7

- 1) (a_n) est une suite géométrique, de premier terme $a_1=238$ et de raison 0,92 La raison $q\in]0$; $1[\Rightarrow \lim_{n\to +\infty}a_n=0$
- 2) (b_n) est une suite arithmétique de raison positive $R = \frac{7}{5} \implies \lim_{n \to +\infty} b_n = +\infty$
- 3) (v_n) est une suite géométrique, de premier terme positif et de raison supérieure à 1 $\Rightarrow \lim_{n \to +\infty} a_n = +\infty$
- **4)** (s_n) est une suite géométrique, de premier terme $s_0=1\,500$ et de raison $\frac{1}{4}$ La raison $q\in]0$; $1[\Rightarrow \lim_{n\to +\infty} s_n=0$

Correction Type bac

- **1.** $u_1 = 4600 \times \left(1 + \frac{2}{100}\right) = 4600 \times 1,02 = 4692$ La ville A aura 4 692 habitants en 2011 $v_1 = 5100 + 110 = 5210$ La ville B aura 5 210 habitants en 2011
- **2.** Augmenter de 2% revient à multiplier par 1,02 d'une année sur l'autre : (u_n) est une suite géométrique de 1^{er} terme $u_0=4\,600$ et de raison q=1,02

Pour la ville B, on ajoute 110 d'une année sur l'autre : (v_n) est une suite **arithmétique de 1**er **terme** $v_0=5100$ et de raison 5 210

- **3.** $u_n=u_0\times q^n=4\ 600\times 1{,}02^n$ L'année 2020 correspond à n=10 et $u_{10}=4600\times 1{,}02^{10}\simeq 5\ 607$: La ville A a 5 607 habitants en 2020.
- **4.** $v_n = v_0 + nR = 5\ 100 + 110n$. On a $v_{10} = 5100 + 110 \times 10 = 6\ 200$ La ville B a 6 200 habitants en 2020.
- **5.** (u_n) a son premier terme positif et sa raison supérieure à 1, et (v_n) a sa raison positive : les suites (u_n) et (v_n) sont croissantes.

En affichant à la calculatrice les termes des deux suites, on trouve :

 $u_{31} \simeq 8\,499$ et $v_{31} \simeq 8510$ donc on a encore $u_{31} < v_{31}$ Mais $u_{32} \simeq 8\,669$ et $v_{32} \simeq 8\,620$ donc cette fois $u_{32} > v_{32}$

C'est au bout de 32 ans, à partir de 2042, que la ville A aura plus d'habitants que la ville B

CORRECTE Dements savoirs

Savoir Sag. 5 : Corrigés

Corrigé Entraînement n°1

- 1) La suite (v_n) est une suite géométrique de 1^{er} terme positif et de raison $q \in]0; 1[$. Donc la suite est **décroissante**
- 2) (C_n) est arithmétique et a une raison positive. Donc la suite est **croissante**.
- **3)** La suite (a_n) est une suite géométrique de 1^{er} terme positif et de raison $q = \frac{3}{7} \in]0; 1[$. Donc la suite est **décroissante**
- **4)** (u_n) est une suite géométrique de 1^{er} terme négatif et de raison q>1 \Rightarrow suite **décroissante**

Corrigé Entraînement n°2

- 1) La suite (t_n) est une suite arithmétique de 1^{er} terme $t_1=27\,$ et de raison négative $-4\,$ Donc la suite est **décroissante**
- **2)** La suite (a_n) est une suite géométrique de 1^{er} terme positif et de raison $q = \frac{5}{3} > 1$. Donc la suite est **croissante**
- **3)** La suite (b_n) est une suite géométrique de 1^{er} terme négatif et de raison 0 < q < 1. Donc la suite est **croissante**
- **4)** (u_n) est une suite géométrique de 1^{er} terme négatif et de raison q=1,05>1. Donc la suite est **décroissante**

Corrigé Entraînement n°3

- 1) (a_n) est une suite géométrique, de premier terme $a_1=238$ et de raison 0,92 Le premier terme est positif et la raison $q \in]0$; $1[\Rightarrow$ La suite est **décroissante**
- **2)** (b_n) est une suite arithmétique de raison positive $R = \frac{7}{5} \implies$ La suite est croissante
- 3) (v_n) est une suite géométrique, de premier terme positif et de raison supérieure à 1 \Rightarrow La suite est **croissante**
- **4)** (s_n) est une suite géométrique, de premier terme $s_0 = -1\,500$ et de raison $\frac{1}{4}$ Le premier terme est négatif et la raison $q \in]0$; $1[\Rightarrow \text{La suite est } \mathbf{croissante}]$

Savoir Sag. 6 : Corrigés

Corrigé Entraînement n°1

- 1) (u_n) est une suite géométrique de 1^{er} terme $u_0=4000$ et de raison q=1,3>1 . Elle est donc **croissante**. Il s'agit donc de résoudre : $u_n>150\,000$ A l'aide de la calculatrice, on détermine que : $u_{13}<150\,000$ et $u_{14}>150\,000$. u_n sera donc au-dessus de 150 000 à partir du rang n=14.
- **2)** (v_n) est une suite arithmétique de 1^{er} terme $v_1=256$ et de raison négative (-3) : elle est **décroissante**. Il s'agit donc de résoudre : $v_n \le 0$ $\Leftrightarrow 256-3(n-1) \le 0 \Leftrightarrow 256-3n+3 \le 0 \Leftrightarrow -3n \le -259 \Leftrightarrow n \ge \frac{259}{3}$ ($\approx 86,3$) v_n sera donc négatif à partir de n=87.

Corrigé Entraînement n°2

- 1) (w_n) est une suite arithmétique de 1^{er} terme $w_0=7000$ et de raison négative : elle est **décroissante**. Il s'agit donc de résoudre : $w_n<1200$ $\Leftrightarrow 7000-6n<1200 \Leftrightarrow -6n<-5800 \Leftrightarrow n>\frac{5800}{6} \ (\approx 966,7)$ w_n sera donc en-dessous de 1200 à partir de n=967.
- 2) (z_n) est une suite géométrique de 1^{er} terme $z_1=30$ et de raison q=1,7>1. Elle est donc croissante. Il s'agit donc de résoudre : $z_n>1600$ A l'aide d'un tableau de valeurs sur la calculatrice, on détermine que : $z_8<1600$ et $z_9>1600$. z_n sera donc au-dessus de 1600 à partir du rang n=9.

Corrigé Entraînement n°3

- 1) (a_n) est arithmétique de 1^{er} terme $a_0=1520$ et de raison positive 16 : elle est donc **croissante** On cherche : $1520+16n>52\ 100$ \Leftrightarrow $16n>50\ 580$ \Leftrightarrow $n>\frac{50580}{16}$ or $\frac{50580}{16}\simeq 3\ 161,25$ \Rightarrow à partir du rang 3 162
- **2)** La suite (b_n) est géométrique de 1^{er} terme $b_1=3\,200\,$ positif, et de raison 0,93 inférieure à 1, elle est donc décroissante : On cherche $b_n<1\,530\,$ À la calculatrice, on trouve $b_{11}\simeq 1\,548\,$ et $b_{12}\simeq 1\,440\,$ \Rightarrow à partir du rang 12

Savoir Sag. 7: Corrigés

Corrigé Entraînement n°1

- 1) La suite (t_n) est une suite arithmétique de raison négative -4 donc $\lim_{n \to +\infty} t_n = -\infty$
- 2) La suite (a_n) est une suite géométrique de 1^{er} terme positif et de raison $q=\frac{5}{3}>1$. Donc $\lim_{n\to+\infty}v_n=+\infty$
- 3) La suite (a_n) est une suite géométrique de 1^{er} terme négatif et de raison 0 < q < 1. Donc $\lim_{n \to +\infty} a_n = 0$
- 4) (u_n) est une suite géométrique de 1^{er} terme négatif et de raison q=1,05>1. Donc $\lim_{n\to+\infty}u_n=-\infty$

Corrigé Entraînement n°2

- 1) La suite (v_n) est une suite géométrique de 1^{er} terme positif et de raison $q \in]0;1[$. Donc $\lim_{n \to +\infty} v_n = 0$
- 2) (C_n) est arithmétique et a une raison positive. Donc $\lim_{n\to+\infty} C_n = +\infty$
- 3) La suite (a_n) est une suite géométrique de 1^{er} terme positif et de raison $q=\frac{3}{7}\in]0;1[$. Donc $\lim_{n\to +\infty}a_n=0$
- **4)** (u_n) est une suite géométrique de 1^{er} terme négatif et de raison $q>1 \Rightarrow \lim_{n\to +\infty} u_n=-\infty$

Corrigé Entraînement n°3

- 1) (u_n) est une suite géométrique de 1^{er} terme positif et de raison $q \in]0;1[\Rightarrow \lim_{n \to +\infty} u_n = 0$
- 2) La suite (v_n) est géométrique de 1^{er} terme positif et de raison $q = \frac{7}{3} > 1 \Rightarrow \lim_{n \to +\infty} v_n = +\infty$
- 3) La suite (z_n) est arithmétique de 1^{er} terme $z_0=12$ et de raison négative R=-8 Donc $\lim_{n\to+\infty} \mathbf{z}_n=-\infty$
- **4)** La suite (a_n) est géométrique de 1^{er} terme négatif et de raison $q = \frac{1}{9} \in]0; 1[\Rightarrow \lim_{n \to +\infty} a_n = 0]$

CORRECTION

Correction Exercice 1

- **1.** a. $u_1 = 180 + \frac{4}{100} \times 180 = 187,2 \Rightarrow \text{II y aurait 187 200 spectateurs en 2019.}$
- **b.** Augmenter de 4 % revient à multiplier par $1+\frac{4}{100}=1,04$ d'une année sur l'autre. On a $u_{n+1}=0$ $1,04u_n \Rightarrow$ la suite (u_n) est bien **géométrique, de raison 1,04** et de 1^{er} terme $u_0 = 180$.

c.
$$u_n = u_0 \times q^n = 180 \times 1,04^n$$

- **2. a.** On soustrait 10 d'une année sur l'autre, donc $v_{n+1} = v_n 10 \Rightarrow$ la suite (v_n) est arithmétique de raison –10 et de $1^{\rm er}$ terme $v_0=260$
- **b.** La suite (u_n) est géométrique de 1^{er} terme positif et de raison supérieure à 1, elle est donc **croissante**, la suite (u_n) est arithmétique de raison négative, elle est donc **décroissante**.
- c. En affichant à la calculatrice les termes des deux suites, on trouve :

 $u_4 \simeq 211$ et $v_4 \simeq 220$ donc on a encore $u_4 < v_4$

Mais $u_5 \simeq 219$ et $v_5 \simeq 210$ donc cette fois $u_5 > v_5$

Selon ces modèles, c'est au bout de 5 ans, à partir de 2023, que la le nombre de spectateurs du complexe risque de dépasser celui du cinéma de centre-ville.

Correction Exercice 2

1. a.
$$h_1 = 1$$
, 6 et $h_2 = \frac{4}{5} \times 1$, $h_2 = 1$, 28. b. $h_{n+1} = \frac{4}{5} h_n$

b.
$$h_{n+1}=rac{4}{5}h_n$$

- **c.** La suite (h_n) est **géométrique** de raison $\frac{4}{5}$ et de 1^{er} terme $h_0=2$
- **d.** La suite géométrique (h_n) a son $\mathbf{1}^{\mathrm{er}}$ terme positif et une raison $q\in]0;1[$: elle est donc décroissante
- **2.** On cherche $h_n \leq 0.2$

À la calculatrice, on trouve $~h_{10}\simeq 0{,}215~$ et $~h_{11}\simeq 0{,}172~$ $\Rightarrow~$ à partir du rang ~N=11

3. On sait que $\lim_{n \to +\infty} h_n = 0$ donc, oui, au bout d'un grand temps, la balle ne rebondira plus

Correction Exercice 3

- **1.** B3 : " = B2 * 1.03 "
- **2. a.** Pour la 1^{ère} estimation, augmenter de 3% revient à multiplier par $1 + \frac{3}{100} = 1,03$ d'une semaine à l'autre, donc on a $u_{n+1} = 1,03u_n$: la suite (u_n) est **géométrique** de raison 1,03 et de 1^{er} terme $u_1 = 1000$.

Pour la $2^{\text{ème}}$ estimation, on ajoute 40 d'une semaine à l'autre, donc on a $v_{n+1} = v_n + 40$: la suite (v_n) est **arithmétique** de raison 40 et de 1^{er} terme $v_1 = 1000$.

b.
$$v_n = v_1 + (n-1)R = 1000 + 40(n-1) = 100 + 40n - 40 = 960 + 40n$$
. CQFD

c.
$$u_n = v_1 \times q^{n-1} = 1000 \times 1,03^{n-1}$$

3. On cherche $v_n \le u_n \iff v_n - u_n \le 0 \iff w_n \le 0$ D'après le tableau, on voit que $w_{20} = 6 > 0$ alors que $w_{21} = -6 < 0$

C'est donc à **la 21**^e **semaine** que le nombre de journaux vendus d'après la 1^e estimation deviendrait supérieur au nombre de journaux vendus d'après la 2^e estimation.

Correction Exercice 4

1. a.
$$u_1 = 300 \times \left(1 + \frac{5}{100}\right) + 15 = 300 \times 1,05 + 15 = 330$$
 et $u_2 = 1,05 \times 330 + 15 = 361,5$

b. On a : $u_1-u_0=30$ et $u_2-u_1=31,5\neq 30$ On n'ajoute pas le même nombre d'un terme à l'autre : la suite n'est **pas arithmétique**

On a : $\frac{u_1}{u_0} = 1,1$ et $\frac{u_2}{u_1} \simeq 1,095 \neq 1,1$ On ne multiplie pas par le même nombre d'un terme à l'autre : la suite n'est pas géométrique

2. a.
$$v_0 = u_0 + 300 = 300 + 300 = 600$$

Pour montrer que la suite (v_n) est géométrique ; il faut prouver que $v_{n+1}=qv_n$

Or
$$v_{n+1} = u_{n+1} + 300$$

et comme $u_{n+1} = 1,05u_n + 15$, on a $v_{n+1} = 1,05u_n + 15 + 300 = 1,05u_n + 315$

Mais on veut en fonction de v_n : il faut donc exprimer u_n en fonction de v_n

Comme on a $v_n=u_n+300$, on en déduit que $u_n=v_n-300$

Donc $v_{n+1}=1.05(v_n-300)+315=1.05v_n-315+315$ Et au final on a bien $v_{n+1}=1.05v_n$ \Rightarrow La suite (v_n) est une suite **géométrique** de raison q=1.05 et de 1^{er} terme $v_0=600$

b.
$$v_n = v_0 \times q^n = 600 \times 1,05^n$$

Or on a déjà vu que $u_n = v_n - 300 = \mathbf{600} \times \mathbf{1}, \mathbf{05}^n - \mathbf{300}$ CQFD

3. On cherche $u_8 = 600 \times 1,05^8 - 300 \simeq 586,47 \, \, \mathrm{donc} \, u_8 < 2 \times 300 \, \,$

Non elle n'aura pas encore tout-à-fait doublé de surface.

Correction Exercice 5

1.
$$u_1 = u_0 \times \left(1 - \frac{1}{100}\right) = 84.8 \times 0.991 = 83.952$$

Le taux de scolarisation des jeunes âgés de 18 ans est de 83,952 % en 1996

- **2.** Diminuer de 1% revient à multiplier par $1-\frac{1}{100}=0,99$ d'une année à l'autre. On a alors $u_{n+1}=0,99u_n$: la suite (u_n) est **géométrique** de raison 0,99 et de 1^{er} terme $u_0=84,8$.
- **3.** En calculant les termes successifs à l'aide de la calculatrice, on trouve : $u_5 \simeq 80,6 \geq 80$ mais $u_6 \simeq 79,8 \leq 80$ C'est donc à partir de n=6 En 2001, le taux de scolarisation passe sous les 80 %

4.
$$u_n = u_0 \times q^n =$$
84, **8** \times **0**, **99**ⁿ

5. L'année 2005 correspond à n=10 et on a $u_{10}=84,8\times0,99^{10}\simeq 76,69$ Le taux de scolarisation en 2005 est d'environ 76,69 %