Corrections Savoir SL. 3

Corrigé Exercice 6

- 1) La suite (u_n) semble converger vers une limite $l\simeq 1,732\dots$ La suite (v_n) semble diverger vers $+\infty$ La suite (w_n) ne semble pas avoir de limite, car elle alterne les termes positif et négatif.
- 2) La suite (a_n) ne semble pas avoir de limite, car elle alterne les termes positif et négatif. La suite (b_n) semble converger vers une limite $l\simeq 1$... La suite (c_n) semble diverger vers $-\infty$
- 3) La suite (R_n) semble converger vers une limite $l\simeq 0.8\dots$ La suite (S_n) semble diverger vers $-\infty$ La suite (T_n) semble converger vers une limite $l\simeq 1.7\dots$

Corrigé Exercice 7

1) Pour les suites (q^n) penser à toujours justifier en comparant q à 1

Comme: $3 > 1$, $\lim_{n \to +\infty} 3^n = +\infty$ Donc $\lim_{n \to +\infty} a_n = +\infty$	$\lim_{n\to+\infty} e^{-n} = 0 \implies \lim_{n\to+\infty} s_n = 0$	$\lim_{n \to +\infty} n^2 = +\infty \implies \lim_{n \to +\infty} c_n = -\infty$
On a : 1,2 > 1 $\Rightarrow \lim_{n \to +\infty} 1,2^n = +\infty$ Donc $\lim_{n \to +\infty} g_n = +\infty$	$\lim_{n \to +\infty} \ln(n) = +\infty$ $\Rightarrow \lim_{n \to +\infty} h_n = -\infty$	$\lim_{n\to+\infty}\frac{1}{n^3}=0 \Rightarrow \lim_{n\to+\infty}\varepsilon_n=0$
$\lim_{n\to+\infty} n = +\infty \Rightarrow \lim_{n\to+\infty} l_n = +\infty$	$\lim_{n\to+\infty}e^n=+\infty\Rightarrow\lim_{n\to+\infty}p_n=-\infty$	$-1 < \frac{1}{3} < 1 \Rightarrow \lim_{n \to +\infty} \left(\frac{1}{3}\right)^n = 0$ Donc $\lim_{n \to +\infty} q_n = 0$

$$t_n = 3 \times \left(\frac{2}{3}\right)^n$$
 Comme $-1 < \frac{2}{3} < 1$, $\lim_{n \to +\infty} t_n = 0$

			Un peu plus
$\begin{array}{l} \text{Comme} -2 < -1, \text{la} \\ \text{suite} \ (d_n) \ \text{n'a pas de} \\ \text{limites} \end{array}$	$\lim_{n\to+\infty} n^3 = +\infty$ $\operatorname{Donc} \lim_{n\to+\infty} i_n = -\infty$	Comme 4 > 1, on a $\lim_{n\to +\infty} 4^n = +\infty$ Donc $\lim_{n\to +\infty} j_n = -\infty$	Comme $-1 < \frac{4}{5} < 1$ $\lim_{n \to +\infty} k_n = 0$
Comme $-1 < -0.4 < 1$ $\lim_{n \to +\infty} (-0.4)^n = 0$ Donc $\lim_{n \to +\infty} r_n = 0$	$\lim_{n \to +\infty} \sqrt{n} = +\infty$ Donc $\lim_{n \to +\infty} b_n = -\infty$	$u_n = -5 \times \left(\frac{7}{4}\right)^n$ Comme	$\frac{7}{4} > 1$, $\lim_{n \to +\infty} u_n = -\infty$

2) Sommes

$\lim_{n\to +\infty} 6n^2 = +\infty \text{ et } \lim_{n\to +\infty} \frac{2}{n} = 0$ Donc par somme de limites $\lim_{n\to +\infty} v_n = +\infty$	$\lim_{n\to+\infty}\ln(n)=+\infty$ et $\lim_{n\to+\infty}-n=-\infty$ On se trouve dans un cas indéterminé	$\lim_{n \to +\infty} -3n = -\infty$ Donc par somme de limites $\lim_{n \to +\infty} x_n = -\infty$
$\lim_{n\to +\infty} 3n^2 = +\infty$ et $\lim_{n\to +\infty} n = +\infty$ Donc par somme de limites $\lim_{n\to +\infty} A_n = +\infty$	$\lim_{n \to +\infty} e^n = +\infty$ Donc par somme de limites $\lim_{n \to +\infty} B_n = -\infty$	$\lim_{n o +\infty} rac{1}{n} = 0$ Donc par somme de limites $\lim_{n o +\infty} \mathcal{C}_n = 3$
$\pi>1$, on a : $\lim_{n\to+\infty}\pi^n=+\infty$ Donc par somme de limites $\lim_{n\to+\infty}G_n=+\infty$	$\lim_{n\to +\infty} 3e^{-n} = 0$ Donc par somme de limites $\lim_{n\to +\infty} H_n = -1$	$\lim_{n\to +\infty} -2n^2 = -\infty$ Donc par somme de limites $\lim_{n\to +\infty} I_n = -\infty$

Par somme de limites, $\displaystyle \lim_{n \to +\infty} \!\! L_n = -6 + 4 = -2$

	····	Un peu plus
Comme $-1 < \frac{3}{4} < 1$, on a $\lim_{n \to +\infty} \left(\frac{3}{4}\right)^n = 0$ Donc par somme de limites $\lim_{n \to +\infty} y_n = 3$	$\lim_{n \to +\infty} n^3 = +\infty$ et $\lim_{n \to +\infty} -2n = -\infty$ On se trouve dans un cas indéterminé	La suite $(-1)^n$ n'admet pas de limites, donc (D_n) non plus (Bien qu'on sente que $(-1)^n$ ne pèse pas lourd face à l' ∞ , il va falloir attendre d'autres théorèmes sur les limites pour conclure)
$\lim_{n \to +\infty} \frac{4}{n} = 0 \text{ et } \lim_{n \to +\infty} \frac{1}{n^2} = 0$ Donc par somme de limites $\lim_{n \to +\infty} E_n = 0$	$\lim_{n \to +\infty} -3n = -\infty \text{ et comme } \frac{7}{2} > 1$ on a $\lim_{n \to +\infty} -\left(\frac{7}{2}\right)^n = -\infty$ Donc par somme de limites $\lim_{n \to +\infty} J_n = -\infty$	on a $\lim_{n \to +\infty} 4e^{-n} = 0$ Et $\lim_{n \to +\infty} e^n = +\infty$ $\lim_{n \to +\infty} K_n = -\infty$