Corrigés Savoirs Fc. 6

Corrigé Exercice 16

1)	a١
_,	u,

u	'/					
	х	-8		2		8
	f(x)		+	0	_	

b)

х	-8		-4		8
f'(x)		+	0	_	

c)

x	-8		-1		8
f''(x)		_	0	+	

- d) f est concave sur [-8;-1] et convexe sur [-1;8].
- e) Il y a donc un seul point d'inflexion, dont les coordonnées sont : (-1; 2).

2) a)

х	-8		3		5
g(x)		-	0	+	

b)

x	-8		-3		5
g'(x)		_	0	+	

c)

x	-8		5
g''(x)		+	

- d) g est convexe sur [-8; 5].
- e) Il n'y a pas de point d'inflexion.

Corrigé Exercice 17

1) a)

X	-7		-6		3		8
f'(x)		_	0	+	0	_	

- b) f est décroissante sur [-7; -6] et sur [3; 8]. Elle est croissante sur [-6; 3].
- c) On a:

х	-7		-2	8
f'(x)		1		

On en déduit donc :

х	-7		-2		8
f''(x)		+	0	_	

d) f'' change de signe une seule fois, donc la courbe de f a un seul point d'inflexion en x=-2.

3) a)

x	-7		3		8
h(x)		+	0	_	

b)

x	- 7		8
h'(x)		_	

c)

x	-7		8
<i>h</i> "(<i>x</i>)		0	

- d) h est à la fois convexe et concave sur [-8;5] : c'est un morceau de fonction affine...
- e) Il n'y a pas de point d'inflexion

Un peu plus...

4) a)

х	-8		-7		-3		4		8
a(x)		_	0	+	0	_	0	+	

b)

x	-8		- 5		2		7		8
a'(x)		+	0	_	0	+	0	-	

c)

ĺ	v	_8		_3		5		- Q
	λ	O		3		J		O
	a''(x)		_	0	+	0	_	

- d) a est concave sur [-8; -3] et sur [5; 8]. Elle est convexe sur [-3; 5]
- e) Il y a donc deux points d'inflexion, dont les coordonnées sont : (-5 ; 0) et (5 ; 5).

2) a)

x	-7		- 5		0		5		8
a'(x)		+	0	_	0	+	0	_	

- b) g est croissante sur [-7; -5] et sur [0; 5]. Elle est décroissante sur [-5; 0] et sur [5; 8].
- c) On a:

х	-7	-2		3	8
g'(x)			1		

On en déduit donc :

x	- 7		-2		3		8
a''(x)		_	0	+	0	_	

d) g'' change de signe à deux reprises. La courbe de g a donc deux points d'inflexion en x=-2 et en x=3.

Corrigé Exercice 18

1) a) Dans le tableau de f' qui est donné, on observe l'évolution du signe des valeurs de f'. On a ainsi :

х	-2		1		10
f'(x)		_	0	+	

b) Là où f' est croissante, f'' est positive... On a ainsi :

х	-2		3		10
f''(x)		+	0	_	

c) Là où f' est positive (voir question a), la fonction f est croissante. On a ainsi :

f est décroissante sur [-2; 1] et croissante sur [1; 10].

2) a)

x	0		3		11		15
g'(x)		_	0	+	0	-	

b)

x	0		2		6		15
g''(x)		_	0	+	0	-	

c) g est décroissante sur [0;3] et sur [11;15] et elle est croissante sur [3;11].

Corrigé Exercice 19

QCM 1 1. Réponse C 2. Réponse A

QCM 2 1. Réponse C 2. Réponse D

3. Réponse B

Corrigé Exercice 20

Vrai/faux 1

Proposition fausse: d'après la courbe de f'' la dérivée seconde est négative sur $[1;4] \Rightarrow$ la fonction f est donc plutôt **concave sur l'intervalle** [1;4].

Vrai/faux 2

Proposition a : Vrai : la dérivée seconde s'annule en x = -2 et en x = 3 et y change de signe les deux fois : il y a donc 2 points d'inflexion

Proposition b : Faux : la dérivée seconde y est négative, on a donc plutôt la fonction f qui est concave sur [-2; 3]

Proposition c : Faux : La courbe 1 a un minimum local en -2, alors que la courbe de f doit y avoir un point d'inflexion (voir tableau)

x	-3		-2		3		9
f''(x)		+	0	-	0	+	
		convexe	1	concave	1	convexe	
f(x)			pt		pt		
			inflexion		inflexion		

Corrigé Vrai/faux 3

Proposition a . Faux. L'équation f(x) = 1 admet exactement deux solutions dans l'intervalle [-2; 3].

Proposition b. **Vrai**: Elle est même convexe sur l'intervalle [0 ; 3] puisque le point d'inflexion a tout l'air d'être B (la courbe y traverse sa tangente)

Proposition c. Vrai : la tangente y est horizontale, donc son nombre dérivé est nul : f'(-1) = 0.

Proposition d. Vrai : On cherche le coefficient directeur de la tangente (BD) qui est bien $f'(0) = \frac{-2}{2} = -1$.

Proposition e. Faux : On a par contre f''(x) > 0 sur l'intervalle [1 ; 3] vu que la fonction y es convexe. Et f'(x) y est croissante

Corrigé Exercice 21

1.
$$f(0) = -5$$

$$f(1) = 0$$

$$f'(0) = 6$$

2. Oui, en E car la courbe y traverse sa tangente

4. f(x) = 4 a deux solutions \Rightarrow On a $2 < x_1 < 3$ et $13 < x_2 < 14$

Corrigé Exercice 22

_

1.
$$f(-1) = -2 \times (-1+2)e^{-(-1)} = -2e \simeq -5.44$$

2. $f'(x) = -2e^{-x} - 2(x+2) \times (-e^{-x}) = (-2+2x+4)e^{-x} = (2x+2)e^{-x} = \mathbf{2}(x+1)e^{-x}$

	х	-∞		-1		+∞
2	(x + 1)		_	0	+	
	e^{-x}		+		+	
	f'(x)		_	0	+	
	f(x)		7	-2 <i>e</i>	7	

B

La courbe C_3 représente la fonction f (correspondant au tableau de variation) La courbe C_1 représente la dérivée f' (négative sur $]-\infty$; -1] positive sur $[-1; +\infty[)$

La courbe C_2 représente donc la dérivée seconde f''. On a d'après cette courbe :

X	-1	0	6	
$f^{\prime\prime}(x)$	+	0	_	
f(x)	Convexe		Concave	

Donc f est convexe sur [-1; 0]