Corrections

Corrections Exercice 13

1) **a.**
$$S = \{4 + 11k, k \in \mathbb{Z}\}$$

b.
$$y \equiv 4 \, [5] \Rightarrow S = \{4 + 5p, p \in \mathbb{Z}\}$$

c.
$$a \equiv 1 [3] \Rightarrow S = \{3n + 1, n \in \mathbb{Z}\}$$

2) a.
$$\Leftrightarrow \begin{cases} x \equiv 4 \ [7] \\ 0 < x < 20 \end{cases}$$

Les nombres x sont de la forme 4 + 7n, donc dans]0; 20[on a $S = \{4 ; 11 ; 18\}$

- **b.** Les nombres y sont de la forme 4 + 9k, donc dans [10; 40] on a $S = \{13; 22; 31; 40\}$
- **c.** $a \equiv 2 \, [4]$ Les nombres a sont de la forme 2 + 4n, donc dans [-12; 5] on a $S = \{-10; -6; -2; 2\}$

3) a. On a
$$\begin{cases} 37x - 29 \equiv 15 \ [8] \\ 37 \equiv 5 \ [8] \\ -29 \equiv 3 \ [8] \\ 15 \equiv 7 \ [8] \end{cases}$$
 donc $5x + 3 \equiv 7 \ [8]$

b. On a
$$\begin{cases} 12 \equiv 0 \ [2] \\ -45 \equiv 1 \ [2] \end{cases}$$
 On a donc $12 - 45y \equiv 9 \ [2] \Rightarrow y \equiv 1 \ [2]$ $9 \equiv 1 \ [2]$

c.
$$\begin{cases}
-16m + 20 \equiv 14p + 2 [7] \\
-16 \equiv 5[7] \\
20 \equiv 6[14] \\
14 \equiv 0 [7]
\end{cases} \Rightarrow 5m + 6 \equiv 2 [7]$$

Corrections Exercice 14

1) a.
$$2 + x \equiv 4 [6] \iff x \equiv 4 - 2 [6] \iff x \equiv 2 [6] \implies S = \{2 + 6p, p \in \mathbb{Z}\}$$

b.
$$5 \equiv y - 13[3] \iff y \equiv 5 + 13[3] \iff y \equiv 0[3] \implies S = \{3n, n \in \mathbb{Z}\}$$

2) a.
$$\begin{cases} n-47 \equiv 29 \ [5] \\ -5 \le n \le 15 \end{cases} \Leftrightarrow \begin{cases} n \equiv 76 \ [5] \\ -5 \le n \le 15 \end{cases} \Leftrightarrow \begin{cases} n \equiv 1 \ [5] \\ -5 \le n \le 15 \end{cases} \Leftrightarrow \begin{cases} n = 1+5k, avec \ k \in \mathbb{Z} \\ -5 \le n \le 15 \end{cases}$$
 $\Rightarrow S = \{-4; 1; 6; 11\}$

b.
$$x \equiv -4 \ [9] \iff x \equiv 5 \ [9] \iff x = 5 + 9k$$
, avec $k \in \mathbb{Z} \implies \text{dans} \]100; 120[$, on a $S = \{104; 113\}$

Corrections Exercice 15

1) a. $2x \equiv 4$ [6] On fait le tableau des restes modulo 6

$x \equiv \cdots [6]$	0	1	2	3	4	5
$2x \equiv \cdots [6]$	0	2	4	0	2	4

D'après le tableau, on a x = 2 + 6k ou x = 5 + 6k avec $k \in \mathbb{Z}$

b. $3n \equiv 7$ [11] D'après le tableau de restes ci-dessous, on a $n \equiv 6$ [11] et $S = \{6 + 11k, k \in \mathbb{Z}\}$

n	0	1	2	3	4	5	6	7	8	9	10
3n	0	3	6	9	1	4	7	10	2	5	8

c. $x^3 \equiv 4^3 \ [7] \equiv 64 \ [7] \equiv 1 \ [7]$ On fait le tableau des restes modulo 7

$x \equiv \cdots [7]$	0	1	2	3	4	5	6
χ^3	0	1	8	27	64	125	216
$x^3 \equiv \cdots [7]$	0	1	1	6	1	6	6

D'après le tableau, on a : x = 1 + 7k ou x = 2 + 7k ou x = 4 + 7k avec $k \in \mathbb{Z}$ On écrit $S = \{1 + 7k; 2 + 7n; 4 + 7p, k \in \mathbb{Z}, n \in \mathbb{Z}\}$

d. $6x + 25 \equiv 56$ [4] \Leftrightarrow $6x \equiv 31$ [4] \Leftrightarrow $6x \equiv 3$ [4] On fait le tableau des restes modulo 4

$x \equiv \cdots [4]$	0	1	2	3
$6x \equiv \cdots [4]$	0	2	0	2

D'après le tableau, l'équation $6x \equiv 3$ [4] **n'a pas de solution**, car les seuls restes possibles sont 0 et 2

2) $(x+3)^2$ est un multiple de $4 \Leftrightarrow (x+3)^2 \equiv 0$ [4]

$x \equiv \cdots [4]$	0	1	2	3
$(x+3)^2$	9	16	25	36
$(x+3)^2 \equiv \cdots [4]$	1	0	1	0

C'est pour les nombres de la forme 1 + 4n et 3 + 4n, c'est-à-dire en fait, les **nombres impairs.**

3) a.

$x \equiv \cdots [5]$	0	1	2	3	4
$x^2 \equiv \cdots [5]$	0	1	4	4	1

b. $x^2 - 5y^2 = 3 \implies x^2 - 5y^2 \equiv 3 [5] \implies x^2 \equiv 3 [5]$

Or d'après le tableau des restes, il n'est pas possible d'obtenir 3 ⇒ L'équation n'a pas de solution

Corrections Exercice 16

1) a. Pour
$$k = 4$$
 , on a $7 \times 4 = 27$ et $28 \equiv 1$ [9]

b.
$$7x \equiv 5 \ [9] \stackrel{\times 4}{\Rightarrow} 28x \equiv 20 \ [9] \text{ Avec } \begin{cases} 28 \equiv 1 \ [9] \\ 20 \equiv 2 \ [9] \end{cases} \text{ donc } 1x \equiv \mathbf{2} \ [\mathbf{9}] \text{ et } S = \{\mathbf{2} + \mathbf{9n}, \mathbf{n} \in \mathbb{Z}\}$$

2) a.
$$3x \equiv 2 \ [11] \stackrel{\times 4}{\Rightarrow} 12x \equiv 8 \ [11]$$
 Avec $12 \equiv 1 \ [11]$ donc $1x \equiv 8 \ [11]$ et $S = \{8 + 11k, k \in \mathbb{Z}\}$

b.
$$7x \equiv 13 \ [15] \stackrel{\times 13}{\Longrightarrow} 91x \equiv 169 \ [15] \text{ Avec } \begin{cases} 91 \equiv 1 \ [15] \\ 169 \equiv 4 \ [15] \end{cases} \text{ donc } x \equiv \mathbf{4} \ [\mathbf{15}] \text{ et } S = \{\mathbf{4} + \mathbf{15}n, n \in \mathbb{Z}\}$$

c.
$$5n \equiv -12 \ [7] \Leftrightarrow 5n \equiv 2 \ [7] \overset{\times 10}{\Longrightarrow} 50n \equiv 20 \ [7] \text{ Avec } \begin{cases} 50 \equiv 1 \ [7] \\ 20 \equiv 6 \ [7] \end{cases} \text{ donc } \boldsymbol{n} \equiv \boldsymbol{6} \ [\boldsymbol{7}]$$
 et $S = \{\boldsymbol{6} + \boldsymbol{7p}, \ \boldsymbol{p} \in \mathbb{Z}\}$

Corrections Exercice 17

1) a. pour k = 5 on a 5k = 25 et $25 \equiv 1$ [6].

b. Alors
$$2a - 7 \equiv 5b \ [6] \stackrel{\times 5}{\Rightarrow} \begin{cases} 10a - 35 \equiv 25b \ [6] \\ 10 \equiv 4[6] \\ -35 \equiv 1[6] \end{cases} \Rightarrow 4a + 1 \equiv b \ [6] \ \textit{ou} \ \textit{b} \equiv 4a + 1 \ [6]$$

2) a.
$$4x - 13 \equiv y + 1 [5] \Leftrightarrow \begin{cases} y \equiv 4x - 14 [5] \\ -14 \equiv 1[5] \end{cases} \Rightarrow y \equiv 4x + 1 [5]$$

Pour exprimer y en fonction de x, il faut multiplier par un entier k tel que $4k \equiv 1$ [5] \Rightarrow pour k = 4

$$4x - 13 \equiv y + 1 \, [5] \stackrel{\times 4}{\Rightarrow} \begin{cases} 16x - 52 \equiv 4y + 4 \, [5] \\ 16 \equiv 1 \, [5] \\ -52 \equiv 3 \, [5] \end{cases} \Rightarrow x + 3 \equiv 4y + 4 \, [5] \Rightarrow x \equiv 4y + 1 \, [5]$$

b.
$$\begin{cases} 74x - 39y \equiv 27 \ [5] \\ 74 \equiv 4 \ [5] \\ -39 \equiv 1 \ [5] \\ 27 \equiv 2 \ [5] \end{cases} \Rightarrow 4x + y \equiv 2 \ [5] \Rightarrow \begin{cases} y \equiv 2 - 4x \ [5] \\ -4 \equiv 1 \ [5] \end{cases} \Rightarrow y \equiv x + 2 \ [5]$$

c. on cherche k tel que $3k \equiv 1$ [26] \Rightarrow pour k =

$$\begin{cases} 3m \equiv 5p - 40 \ [26] \\ -40 \equiv 12 \ [26] \end{cases} \Rightarrow 3m \equiv 5p + 12 \ [26] \qquad \stackrel{\times 9}{\Rightarrow} \begin{cases} 27m \equiv 45p + 4 \ [26] \\ 27 \equiv 1 \ [26] \\ 45 \equiv 19 \ [26] \\ 108 \equiv 21 \ [26] \end{cases} \Rightarrow m \equiv 19p + 4 \ [26]$$

on cherche k tel que $5k \equiv 1$ [26] \Rightarrow pour k = 21

on cherche
$$k$$
 tel que $5k \equiv 1$ [26] \Rightarrow pour $k = 21$

$$\begin{cases}
3m + 40 \equiv 5p \ [26] \\
40 \equiv 14 \ [26]
\end{cases}
\Rightarrow 5p \equiv 3m + 14 \ [26]$$

$$\stackrel{\times 21}{\Rightarrow} \begin{cases}
105p \equiv 63m + 294 \ [26] \\
105 \equiv 1 \ [26] \\
63 \equiv 11 \ [26] \\
294 \equiv 8 \ [26]
\end{cases}$$

$$\Rightarrow p \equiv 11m + 8 \ [26]$$

d. $2x + 3 \equiv y - 1$ [7] $\Leftrightarrow 2x \equiv y - 4$ [7] $\equiv y + 3$ [7] on cherche k tell que $2k \equiv 1$ [7] \Rightarrow pour k = 4**d.** 2x + 3 = y - 1 [7] $\Rightarrow 2x - y$ $\Rightarrow 2x - y + 1$ [7] $\Rightarrow 2x \equiv y + 3$ [7] $\Rightarrow x \equiv 4y + 5$ [7] $\Rightarrow x \equiv 4y + 5$ [7] $\Rightarrow x \equiv 4y + 5$ [7] Réciproquement: $x \equiv 4y + 5$ [7] $\Rightarrow 2x + 3 \equiv y - 1$ [7] $\Rightarrow 2x + 3 \equiv y - 1$ [7] $\Rightarrow 13 \equiv -1$ [7]

Réciproquement :
$$x \equiv 4y + 5 \ [7] \Rightarrow \begin{cases} 2x + 3 \equiv 8y + 13 \ [7] \\ 8 \equiv 1 \ [7] \end{cases} \Rightarrow 2x + 3 \equiv y - 1 \ [7] \\ 13 \equiv -1 \ [7] \end{cases}$$

L'équivalence est vraie

Corrections Exercice 18

$$(S_1) \begin{cases} 5x - y \equiv 6 \ [3] \\ 2x + 7y \equiv 13 \ [3] \end{cases} \Rightarrow \begin{cases} 7 \begin{cases} 35x - 7y \equiv 42 \ [3] \\ 2x + 7y \equiv 13 \ [3] \end{cases} \Rightarrow \text{Par addition } 37x \equiv 55 \ [3] \Rightarrow x \equiv 1 \ [3]$$

$$\begin{cases} 5x - y \equiv 6 \ [3] \\ 2x + 7y \equiv 13 \ [3] \end{cases} \Rightarrow \begin{cases} 10x - 2y \equiv 12 \ [3] \\ -10x - 35y \equiv -65 \ [3] \end{cases} \Rightarrow -37y \equiv -53 \ [3] \Rightarrow -y \equiv -2 \ [3]$$
 Les solutions sont de la forme
$$\begin{cases} x \equiv 1 \ [3] \\ y \equiv 2 \ [3] \end{cases}$$

$$(S_2): \begin{cases} 2a \equiv 10 + 3b & [7] \\ b \equiv 12 + 6a & [7] \end{cases} \Rightarrow \begin{cases} 2a - 3b \equiv 3 & [7] \\ a + b \equiv 5 & [7] \end{cases} \Rightarrow \begin{cases} 2a - 3b \equiv 3 & [7] \\ -2a - 2b \equiv -10 & [7] \end{cases}$$

$$\Rightarrow \text{Par addition } -5b \equiv -7 \ [7] \Rightarrow 2b \equiv 0 \ [7] \end{cases} \Rightarrow \begin{cases} 8b \equiv 0 \ [7] \\ 8 \equiv 1 \ [7] \end{cases} \Rightarrow \mathbf{b} \equiv \mathbf{0} \ [7]$$

$$\begin{cases} 2a - 3b \equiv 3 \mod 7 \\ a + b \equiv 5 \mod 7 \end{cases} \Rightarrow \begin{cases} 2a - 3b \equiv 3 \mod 7 \\ 3a + 3b \equiv 15 \mod 7 \end{cases} \Rightarrow \operatorname{Par addition} \ 5a \equiv 18 \ [7] \ \Rightarrow 5a \equiv 4 \ [7]$$

$$\Rightarrow \begin{cases} 50a \equiv 40 \ [7] \\ 50 \equiv 1 \ [7] \ \Rightarrow a \equiv 5 \ [7]$$

$$40 \equiv 5 \ [7]$$

Les solutions sont de la forme $\begin{cases} a \equiv 5 \ [7] \\ b \equiv 0 \ [7] \end{cases}$ mais, sachant que : $\begin{cases} 0 \le a < 7 \\ 20 \le b < 27 \end{cases}$ on a $\begin{cases} a = 5 \\ b = 21 \end{cases}$