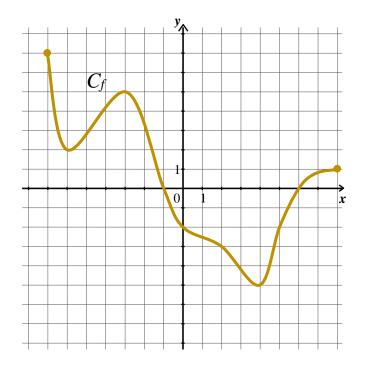
Études de fonctions - Exercice de synthèse

Synthèse 1 : Etude graphique

On donne la fonction f, dont la courbe représentative C_f est donnée sur le graphique ci-contre.

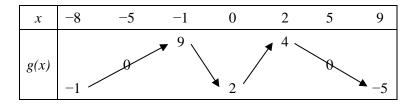
Déterminer graphiquement les réponses aux questions suivantes :

- 1) Quel est l'ensemble de définition de f?
- 2) Faire le tableau de variation de f
- 3) a) Donner les extrema de *f* sur son ensemble de définition
 - b) En déduire un encadrement de la fonction f sur son ensemble de définition.
- 4) a) Quelle est l'image de -3 par la fonction f?
 - b) Quel nombre a pour image -2 par la fonction f?
 - c) Quelles sont les valeurs de x dont l'image par f est 0 ?
 - d) Quelle est l'image de 0 ?



Synthèse 2 : Etude à partir du tableau de variation

On définit une fonction g dont on donne ci-dessous le tableau de variation :



- 1) Quel est l'ensemble de définition de la fonction g
- 2) a) Quelle est l'image du nombre -5 par la fonction g?
 - b) Quel nombre a pour image 0 par la fonction g?
- 3) Déterminer les extrema de g sur son ensemble de définition
- 4) Déterminer un encadrement de g(x) pour $x \in [0; 5]$
- 5) a) Comparer g(-4) et g(-2). Justifier.
 - b) Comparer g(4) et g(3). Justifier.
- 6) Construire une courbe qui pourrait représenter la fonction *g* en tenant compte de toutes les informations du tableau.

Synthèse 3 : Etude à partir de l'expression littérale

On donne la fonction h définie par $h(x) = \frac{2-x}{x+2}$

On décide d'étudier la fonction h sur l'ensemble de définition [-10; -2[U]-2; 8]

- 1) Le nombre -2 a-t-il une image par la fonction h? Expliquer pourquoi.
- 2) a) Calculer l'image du nombre -6 par la fonction h.
 - b) Combien vaut h(0)
 - c) Le point $M\left(5; -\frac{1}{2}\right)$ appartient-il à la courbe représentative de h? Justifier.
- 3) Compléter, à l'aide de la calculatrice, le tableau de valeur ci-dessous (en donnant une valeur approchée au dixième si nécessaire).

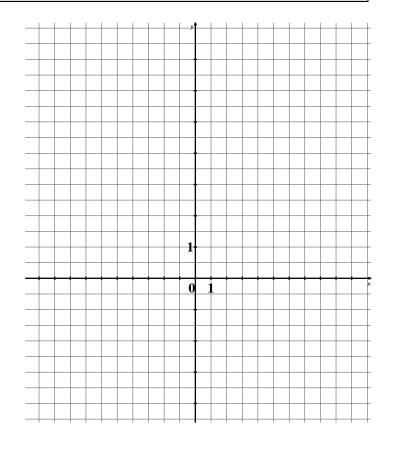
х	-10	-8	-6	-4	-3	-2,5	-1,5	-1	0	2	4	6	8
h(x)													

- 4) Tracer le plus précisément possible la représentation graphique de f dans un repère adapté.
- 5) À partir de votre graphique, déterminer le tableau de variation de la fonction h
- 6) La fonction h a-t-elle un minimum ou un maximum sur son ensemble de définition ? Expliquer.

Synthèse 4 : Dans l'autre sens

Soit une fonction f telle que :

- f est définie sur [-10; 10]
- Les antécédents de 0 par f sont -2; 2 et 10
- f est croissante sur [-2; 1] et sur [5; 10] et décroissante sur [-10; -2] et sur [1; 5]
- Le maximum de f est 5; le minimum de f est -2
- On a f(1) = 4
- La courbe représentative de f coupe l'axe des ordonnées au point d'ordonnée 2
- 1) Construire le tableau de variation de la fonction \boldsymbol{f}
- 2) Construire dans le repère ci-contre la courbe de f



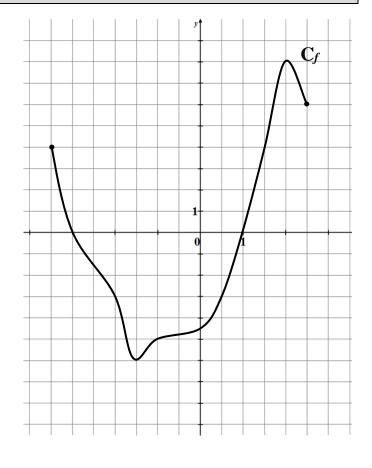
Synthèse 5 : La totale

Partie 1 : Étude de f

La fonction f est représentée sur le graphique ci-contre. Déterminer graphiquement les réponses aux questions suivantes :

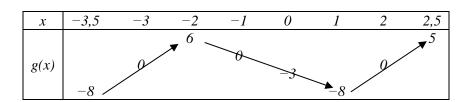
- 1) a) Quel est l'ensemble de définition de f?
 - b) Quelle est l'image de 0 ?
 - c) Quel nombre a pour image 4
- 2) a) Déterminer le tableau de variation de f
 - b) Compléter les deux inégalités suivantes :

pour
$$x \in D_f$$
, $f(x) \le \dots$ et $f(x) \ge \dots$



Partie 2 : Étude de g

On donne le tableau de variation complété de la fonction g, définie sur [-3,5;2,5]



- 1) Compléter les inégalités suivantes :
- a) pour $x \in [-3,5; 2,5]$, on a $\leq g(x) \leq$
- b) pour $x \in [-3; 0]$, on a $\leq g(x) \leq$
- c) pour $x \in [-1; 2,5]$, on a $\leq g(x) \leq$
- 2) a) Combien le nombre 3 a-t-il d'antécédents sur [-3,5 ; 2,5] ?
 - b) Donner le plus petit intervalle auquel chacune de ces antécédents appartiennent

Partie 3: Tracé d'une fonction

Soit *h* la fonction définie sur [-3,5; 2,5] par : $h(x) = x^3 + \frac{3}{2}x^2 - 6x - \frac{9}{2}$

a) Compléter le tableau de valeurs ci-dessous (aucune justification n'est demandée)

х	-3,5	-3	-2	-1	0	1	2	2,5
h(x)								

b) Construire la représentation graphique de h dans le même graphique que celui de la partie 1.

Corrections - Fonctions - Exercices de synthèse

CORRECTION Synthèse 1

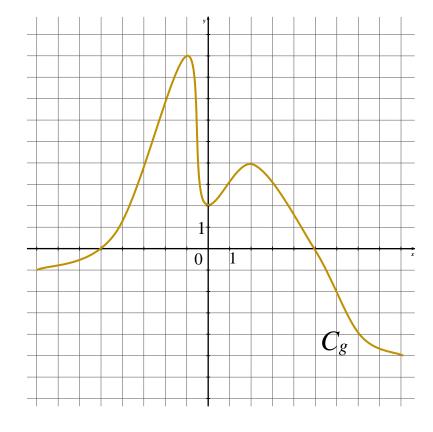
1)
$$D_f = [-7; 8]$$

2)					
х	-7	-6	-3	4	8
f(x)	7	2/	▼ ⁵ \	_5 /	7 1

- 3) a) Maximum de f : y = 7Minimum de f: y = -5
 - b) Pour $x \in [-7; 8]$, on a $-5 \le f(x) \le 7$
- 4) a) L'image de -3 par la fonction f est 5
 - b) Les nombres 0 et 5 ont pour image -52 par f
 - c) Les valeurs de x dont l'image par f est 0 sont -1 et 6
 - d) f(0) = -2

CORRECTION Synthèse 2

- 1) $D_g = [-8; 9]$
- 2) a) L'image du nombre -5 est 0
 - b) -5 et 5 ont pour image 0 par g
- 3) Maximum de g: y = 9, Minimum de g: y = -5
- 4) Pour $x \in [0; 5]$ on a $0 \le g(x) \le 4$
- 5) a) g(-4) < g(-2) car la fonction g est croissante sur l'intervalle [-8; -1]
 - b) (Attention l'ordre : 4 > 3) On a g(4) < g(3) car la fonction g est décroissante sur l'intervalle [2; 9]
- 6) Ci-contre

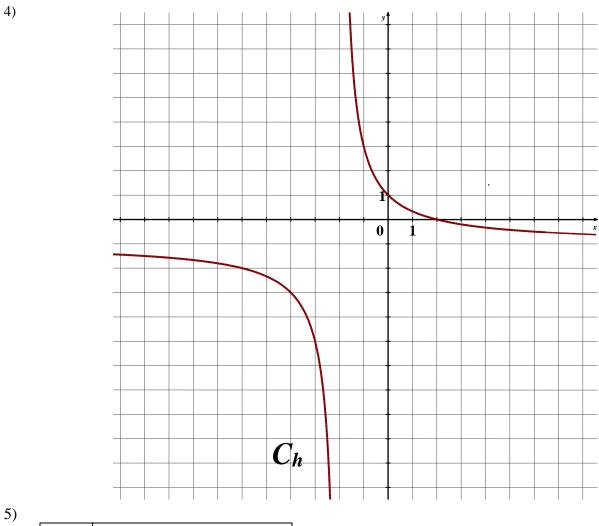


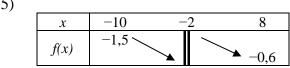
CORRECTION Synthèse 3

1) Le nombre -2 n'a pas d'image par la fonction h car on ne peut pas diviser par zéro (interdit mathématique), or, si on remplaçait x par -2 dans h(x), ce serait le cas.

2) a)
$$h(-6) = \frac{2 - (-6)}{-6 + 2} = \frac{2 + 6}{-4} = -\frac{8}{4} = -2$$
 b) $h(0) = \frac{2 - 0}{0 + 2} = \frac{2}{2} = 1$ c) $h(5) = \frac{2 - 5}{5 + 2} = -\frac{3}{7} \neq -\frac{1}{2} \Rightarrow \text{ Le point M } (5; -\frac{1}{2}) \text{ n'appartient pas à la courbe représentative de } h$

3)															
	х	-10	-8	-6	-4	-3	-2,5	-1,5	-1	0	2	4	6	8	
	h(x)	-1,5	≃ - 1,7	-2	-3	-5	-9	7	3	1	0	≃ − 0,3	- 0,5	-0,6	





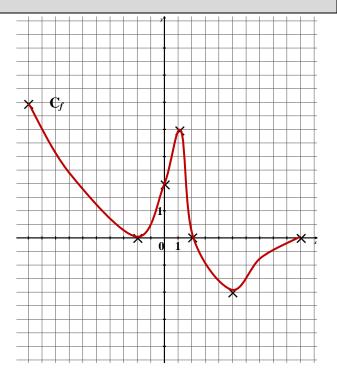
6) La fonction h n'a ni minimum ni maximum sur son ensemble de définition : plus on se rapproche de la valeur interdite (-2) par la gauche, plus elle « plonge » vers $-\infty$ et : plus on se rapproche de la valeur interdite par la droite, plus elle « monte » vers $+\infty$

Corrigé Synthèse 5

1)

Ī	х	-10	-2	1	5	10
	f(x)	5 `		≠ 4		7 0

2) Cf. ci-contre



CORRECTION Synthèse 6

Partie 1:

1) a)
$$D_f = [-3,5; 2,5]$$

b)
$$f(0) = -4.5$$

c)
$$f(x) = 4 \Rightarrow$$
 Les nombres -3,5 et 1,5

2) a)

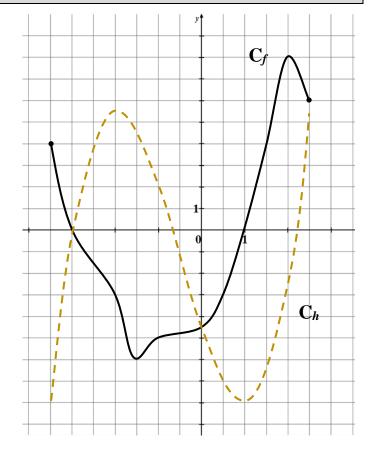
а	,				
	х	-3,5	-1,5	2	2,5
	f(x)	4 \		▼ 8 <	→ 6

b) pour $x \in D_f$, $f(x) \le 8$ et $f(x) \ge -6$

Partie 2

- 1) a) pour $x \in [-3,5; 2,5]$, on a $-8 \le g(x) \le 6$
 - b) pour $x \in [-3; 0]$, on a $-3 \le g(x) \le 6$
 - c) pour $x \in [-1; 2,5]$, on a $-8 \le g(x) \le 5$
- 2) a) $g(x) = 3 \Rightarrow 3$ antécédents

b)
$$x_1 \in]-3$$
; $-2[; x_2 \in]-2$; $-1[$ et $x_1 \in]2$; 2.5[



Partie 3:

a)

Ī	х	-3,5	-3	-2	-1	0	1	2	2,5
	h(x)	-8	0	5,5	2	-4,5	-8	-2,5	5,5