Savoir SL. 2: Utilisation d'une suite auxiliaire

Exercice 4 : Suites arithmético-géométriques

1) On considère la suite (u_n) de premier terme $u_0 = 1$ et telle que $u_{n+1} = 5u_n + 8$ pour tout entier naturel n.

On considère la suite (v_n) définie par :

 $v_n = u_n + 2$ pour tout entier naturel n.

- **a.** Calculer u_1 , u_2 , u_3 puis v_0 , v_1 , v_2 et v_3
- **b.** Montrer que la suite (v_n) est géométrique
- **c.** Déterminer l'expression de v_n en fonction de n
- **d.** En déduire l'expression de u_n en fonction de n
- **2)** On considère la suite (u_n) définie par : $\begin{cases} u_{n+1} = 1.6u_n 15 \\ u_0 = 800 \end{cases}$

On définit suite (v_n) pour tout entier naturel n par :

$$v_n = u_n - 25$$

- **a.** Quelle est la nature de la suite (v_n) ?
- **b**. En déduire l'expression de u_n en fonction de n.
- 3) Soit la suite (u_n) définie pour tout n par : $\begin{cases} u_{n+1} = \frac{1}{2}u_n + 1 \\ u_0 = 6 \end{cases}$ On admet que, pour tout n, on a $u_n \neq 2$ Soit la suite (v_n) définie pour tout n par : $v_n = u_n - 2$
- **a.** Calculer les 3 premiers termes des suites u et v
- **b.** Montrer que la suite ν est géométrique de raison $\frac{1}{2}$
- **c.** Exprimer v_n en fonction de n
- **d.** En déduire l'expression de u_n en fonction de n

Un peu plus...

4) Le responsable du foyer des jeunes d'un village a décidé d'organiser une brocante annuelle. Pour la première brocante, en 2012, il a recueilli 110 inscriptions. D'après les renseignements pris auprès d'autres organisateurs dans les villages voisins, il estime que d'une année sur l'autre, 90 % des exposants se réinscriront et que 30 nouvelles demandes seront déposées.

On désigne par u_n le nombre d'exposants en (2012+n) avec n un entier naturel. Ainsi u_0 est le nombre d'exposants en 2012, soit $u_0 = 110$.

- a. Quel est le nombre d'exposants attendu pour 2013?
- **b.** Justifier que, pour tout entier $n \cdot u_{n+1} = 0.9u_n + 30.$
- **c.** Pour tout entier naturel n, on pose $v_n =$ $u_n - 300$.

Démontrer que la suite (v_n) est géométrique de raison 0,9.

d. En déduire pour tout entier naturel n, l'expression de u_n en fonction de n

Exercice 5: Autres suites

1) Soit la suite (u_n) définie par : $\begin{cases} u_{n+1} = \frac{u_n}{2u_n+1} \\ u_0 = -1 \end{cases}$ et (v_n) définie pour tout n par : $v_n = \frac{1}{u_n}$.

On admet que, pour tout n, on a $u_n \neq -\frac{1}{2}$ et $u_n \neq 0$

- **a.** Calculer les 3 premiers termes des suites u et v
- **b.** Démontrer que la suite v est arithmétique de raison 2
- **c.** Exprimer v_n en fonction de n
- d. En déduire l'expression de u_n en fonction de n
- 2) Soit les suites (a_n) et (b_n) définies pour tout n par : $\begin{cases} a_1=2\\ a_{n+1}=\frac{2}{3}a_n+\frac{1}{3}n+1 \end{cases}$ et $b_n=a_n-n$
 - **a.** Démontrer que (b_n) est géométrique
 - **b.** Exprimer a_n en fonction de n

Un peu plus...