Chapitre 3

Suites et suites annexes - Limites de suites

Savoirs

SL. 1 : Rappels sur les suites : formule explicite, définition par récurrence, suites arithmétiques et géométriques, dépassement de seuil

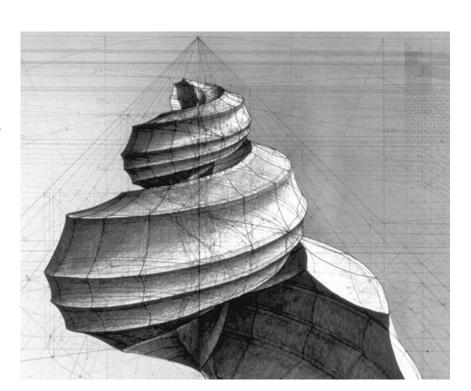
SL. 2: Utilisation d'une suite annexe

SL.3: Limites de suites : Suites usuelles, multiples et sommes

SL.4: Limites de suites : produits et quotients

SI.5: Cas d'indétermination

Plus : Limites de suites : utilisation des définitions



Savoirs SL. 1: Rappels sur les suites

Exercice 1 : Calcul de termes, formule explicite et relation de récurrence

- 1) Soit (u_n) définie par : $u_n = \frac{1}{n+3} 2n^2$ pour $n \in \mathbb{N}$.
 - **a.** Calculer u_1 et u_9
 - **b.** Exprimer en fonction de k le terme u_{k+1}
- **2)** Soit (A_n) définie par : $A_n = \mathbf{1} + (n-1)(n+2)$ pour $n \in \mathbb{N}$
 - **a.** Calculer A_1 et A_8
 - **b.** Exprimer en fonction de p le terme A_{p+1}
- 3) On donne la suite (v_n) définie par : $\begin{cases} v_{n+1} = 4v_n + \frac{1}{v_n} \\ v_1 = \frac{1}{2} \end{cases}$
 - **a.** Calculer v_2 et v_4
 - **b.** Exprimer le plus simplement possible v_{p+2}

Un peu plus...

4) On donne la suite (T_n) définie par :

$$\begin{cases} T_{n+1} = 2T_n + \frac{1}{T_{n-1}} \\ T_0 = 2 \; ; \; T_1 = 1 \end{cases}$$

- **a.** Calculer T_2 et T_3
- **b.** Exprimer le plus simplement possible T_{k+2}

1) (a_n) est une suite arithmétique de raison $\frac{1}{4}$ et de 1^{er} terme $a_0 = -64$

 (b_n) est une suite arithmétique de raison **–5** et de $\mathbf{1}^{\mathrm{er}}$ terme $\mathbf{b_2} = \mathbf{101}$

- **a.** Exprimer a_{n+1} en fonction de a_n et exprimer b_n en fonction de b_{n-1} .
- **b.** Exprimer a_n et b_n en fonction de n.
- **c.** Calculer, en précisant la formule utilisée, les termes a_1 ; b_0 ; a_8 et b_{45}

2) (c_n) est une suite géométrique de raison $\frac{2}{7}$ et de 1^{er} terme $c_0 = -1$

 (d_n) est une suite géométrique de raison $-{f 10}$ et de ${f 1}^{
m er}$ terme ${m d_3}=rac{1}{3000}$

- **a.** Exprimer c_{n+1} en fonction de c_n et d_n en fonction de d_{n-1} .
- **b.** Exprimer c_n et d_n en fonction de n.
- **c.** Calculer, en précisant la formule utilisée, les termes c_1 ; d_2 ; c_5 et d_7
- 3) Déterminer, en justifiant, le sens de variation des suites :
 - **a.** (b_n) est une suite géométrique de raison 1,5 et de 1^{er} terme $b_0 = -10$
 - **b.** (c_n) est une suite géométrique de raison 0,2 et de 1^{er} terme $c_1 = -12$
 - **c.** (d_n) est une suite arithmétique de raison $-\frac{1}{4}$ et de 1^{er} terme $d_2=2$
- **4)** a. (w_n) est une suite arithmétique de raison 0,01 et de 1^{er} terme $w_1=2$. Résoudre $w_n\geq 200$
 - **b.** (r_n) est une suite géométrique de raison 1 et de 1^{er} terme $r_0=43$. La suite r dépasse-t-elle le seuil de $10\,000$? Justifier.

Exercice 3: Suites, tableurs et algorithmes

1) On donne la feuille de calcul suivante :

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1		Suite <i>u</i>			Suite v			Suite a			Suite <i>b</i>	
2												
3		rang n	terme u n		rang n	terme v n		rang n	terme a n		rang n	terme b n
4		0			0	5		0			0	
5		1			1	0		1			1	
6		2	-2		2	-10		2			2	
7		3	0		3	-30		3			3	
8		4	4		4	-70		4			4	
9		5	10		5	-150		5			5	
10		6	18		6	-310		6			6	

Pour la suite u, on a entré dans la case C6 la formule : « =B6*B6-3*B6 »

- a. La suite est-elle définie par une formule explicite ou une relation de récurrence ?
- **b**. Donner l'expression de son terme u_n
- **c.** On veut calculer les termes de la suite a définie par : $\begin{cases} a_{n+1} = (a_n 3)^2 \\ a_0 = 1 \end{cases}$ Que doit-on entrer dans quelle case ?
- 2) On considère l'algorithme suivant :

On saisit S = 2000 en entrée.

À quelle suite correspond cet algorithme ? Donner ses caractéristiques.

À quel problème répond cet algorithme (faire une phrase d'énoncé) Décrire chaque étape.

Quelles sont les valeurs de N et de V à la fin de cet algorithme ?

ENTRÉE:

Saisir *S*INITIALISATION:

 $V \leftarrow 230$ $N \leftarrow 1$

TRAITEMENT:

Tant que V < S $N \leftarrow N + 1$ $V \leftarrow V \times 2$

Fin du Tant que