Savoir Sag. 1: Formule explicite et relation de récurrence

Exercice 1 : Formule explicite (ou terme général)

1) On définit la suite u pour $n \ge 0$ par son terme général : $u_n = 2n + 1$

- a) Calculer les 3 premiers termes de la suite
- **b)** Calculer u_{10}
- **2)** On définit la suite w pour $n \in \mathbb{N}$ par :

$$w_n = (-1)^n$$

- a) Calculer les 4 premiers termes de la suite
- **b)** Calculer w_{15} et w_{100}

Besoin de plus d'entraînement?

4) On définit la suite ε pour $n \ge 1$ par : $e_n =$

$$\varepsilon_n = \frac{1}{1 + \frac{1}{n}}$$

- a) Calculer les 4 premiers termes de la suite
- **b)** Calculer ε_9
- c) Montrer que, pour tout $n \ge 1$, on a :

$$\varepsilon_n = \frac{n}{n+1}$$

- 3) On définit la suite v pour $n \ge 2$ par la formule explicite : $v_n = \frac{3-n^2}{n}$
 - a) Calculer les 3 premiers termes de la suite
 - **b)** Calculer v_{21}

Exercice 2 : Relation de récurrence

Dans chaque cas, calculer les termes demandés

- a) On définit la suite u par son 1^{er} terme $u_0 = 3$ et la relation de récurrence $u_{n+1} = 2u_n + 1$ Calculer u_1 ; u_2 ; u_3 et u_4
- **b)** Soit la suite (v_n) définie par $v_2 = 3$ et, pour $n \ge 2$, par la relation $v_{n+1} = v_n^2 + \frac{1}{n_n+1}$ Calculer v_3 et v_4

Besoin de plus d'entraînement?

Dans chaque cas, calculer les termes demandés

e) On a
$$(C_n)_{n \in \mathbb{N}^*}$$
 : $\begin{cases} c_{n+1} = \sqrt{c_n^2 + 2} \\ c_1 = 5 \end{cases}$

Calculer C_2 et C_3

f) On définit la suite (d_n) par ses premiers termes $d_0 = 2$ et $d_1 = -2$ et la relation de récurrence :

$$d_{n+1} = 3d_n - 2d_{n-1}$$

Calculer d_2 et d_4

- c) On donne la suite $(s_n)_{n \in \mathbb{N}}$ définie par : $\begin{cases} s_{n+2} = \frac{3s_{n+1}+1}{s_n-2} \\ s_0 = 3 \text{ et } s_1 = 5 \end{cases}$. Calculer les termes s_2 et s_4
- **d)** Soit la suite a définie par son 1 er terme $a_0=-10$ et, pour $n\geq 1$, par la relation : $a_n=2-3a_{n-1}$ Calculer a_1 ; a_2 et a_3

Exercice 3 : Donner la fonction f(n) ou $g(u_n)$

- **1)** Dans chaque cas, donner la fonction f telle que $u_n = f(n)$.
- a) $u_n = \frac{3n-7}{n+3}$
- **b)** $u_n = 3n^2 5n + 1$
- **2)** Pour chacune des suites, donner la fonction g telle que $u_{n+1} = g(u_n)$.
- **a)** $u_{n+1} = 5u_n^2 3u_n + 5$ **b)** $u_n = \frac{7}{u_{n+1}}$ **c)** $u_n = 2u_{n+1} 5$ (attention)

Exercice 4: Jouer avec les indices

1) On definit la suite u pour $n \in \mathbb{N}$ par : $u_n = \frac{n-1}{n+2}$ Exprimer en fonction de n les termes :

a) u_{n+1}

b) u_{n-1} **c)** $u_n + 1$ **d)** $u_n - 1$

2) On définit la suite w par son 1^{er} terme $w_0 = -1$ et la relation de récurrence, $u_{n+1} = 5u_n + 3$

Exprimer le plus simplement possible les termes :

b) u_n **c)** $u_n - 1$ **d)** u_{n-1}

Besoin de plus d'entraînement?

1) On définit la suite v pour $n \ge 1$ par son terme général : $v_n = 2n^2 - 3$

Exprimer en fonction de n les termes v_{n+1} : v_{n-1} ; $v_n + 1$ et $v_n - 1$

2) On définit la suite a par son 1^{er} terme $a_0 = \frac{1}{2}$ et la relation de récurrence : $a_n = 3a_{n-1}^2 - 2a_{n-1}$ Exprimer le plus simplement possible les termes : a_{n+1} ; a_{n-1} et $a_n + 1$

Exercice 5: Le 1^{er} terme qui change tout

On donne la suite u, définie par la relation de récurrence : $u_{n+1} = 2(u_n - 3)^2$

- **a.** Si le premier terme de la suite est $u_0 = 7$, calculer alors les 3 termes suivants u_1 ; u_2 et u_3
- **b.** Si le premier terme de la suite est $u_0=2$, calculer alors les 3 termes suivants u_1 ; u_2 et u_3

Exercice 6: Trouver la formule explicite

Pour chacune des suites suivantes, on donne les premiers termes.

Essayer d'abord exprimer à l'aide d'une phrase de quelle suite de nombre il s'agit, puis donner la formule explicite de la suite (la formule qui donne u_n en fonction de n)

1)

v_{0}	v_1	v_2	v_3	v_4
1	3	5	7	9

2)	w_0	w_1	W_2	W_3	W_4	w_5	١
-,	0	1	4	9	16	25	

 S_5

Exercice 7 : Trouver la relation de récurrence

1) Pour chacune des suites suivantes dont on donne les premiers termes, donner la relation de récurrence (la relation qui donne u_{n+1} en fonction de u_n)

a)				
u_0	u_1	u_2	u_3	u_4
1	4	7	10	13

b)				
u_1	u_2	u_3	u_4	u_5
100	95	90	85	80

c)				
u_0	u_1	u_2	u_3	u_4
1	3	9	27	81

3)

d)				
u_1	u_2	u_3	u_4	u_5
2	5	10	17	26

e)								
u_0	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8
$\frac{u_0}{1}$	1	2	3	5	8	13	21	34

f)					
u_0	u_1	u_2	u_3	u_4	u_5
2	2	4	12	48	240

2) Dans chaque cas, exprimer u_{n+1} d'abord en fonction de n puis en fonction de u_n

a)
$$u_n = 4n - 1$$

b)
$$u_n = n^2$$

b)
$$u_n = n^2$$
 c) $u_{n+1} = 3n$

Exercice 8 : Le lien entre récurrence et explicite

On donne les suites (u_n) et (w_n) définies par $u_n = -2 + 5n$ et $w_n = 4 \times 3^n$

1) Écrire u_{n+1} et w_{n+1} en fonction de n

2) Montrer que
$$(u)$$
 et (w) sont définies par les relations :
$$\begin{cases} u_{n+1} = u_n + 5 \\ u_0 = -2 \end{cases}$$
 et
$$\begin{cases} w_n = 3w_{n-1} \\ w_0 = 4 \end{cases}$$

3) Quelles sont les formules les plus utiles pour calculer u_1 ; w_1 ; u_2 ; w_2 ; u_9 ; w_9