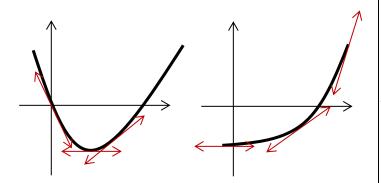
Convexité

Fonction CONVEXE

 \odot



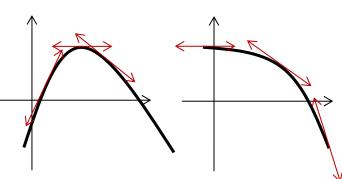
La courbe est toujours **AU DESSUS** de ses tangentes.

La courbure est orientée vers le haut, comme 🙂

La dérivée seconde est **positive** $f''(x) \ge 0$

La dérivée est **croissante** f'(x)

Fonction CONCAVE



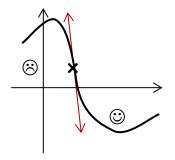
La courbe est toujours **EN DESSOUS** de ses tangentes.

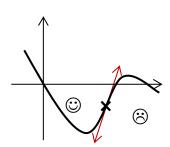
La courbure est orientée vers le bas, comme 😌

La dérivée seconde est **négative** $f''(x) \leq 0$

La dérivée est **décroissante** f'(x) \checkmark

Point d'inflexion





La courbe **TRAVERSE** la tangente

La dérivée seconde est **égale à zéro** (« s'annule ») et **change de signe** (la fonction passe de convexe à concave ou vice-versa)

Résumé 1: Signes, sens de variation et convexité

	Fonction <i>f</i>	Dérivée <i>f'</i>	Dérivée seconde <i>f"</i>
	Signe de <i>f</i>		
	$f \ge 0 (+)$		
Τι	$f \leq 0 (-)$		
• `	Variation de <i>f</i>	Signe de $m{f}'$	
	<i>f</i> ⊅	$f' \ge 0 (+)$	
	<i>f</i> >	$f' \leq 0 (-)$	
	Convexité de <i>f</i>	Variation de f'	Signe de f''
	<i>f</i> convexe ⊚ ¢	<i>f′</i>	$\Rightarrow f'' \ge 0 (+)$
	<i>f</i> concave ⊗	$f' \searrow$	$f'' \le 0 (-)$

Résumé 2: Zéro, extrema et points d'inflexion

Fonction f	Dérivée f ′	Dérivée seconde f "
f = 0 Point d'intersection (Ox)		
Extremum local de <i>f</i>	f'= 0 f' change de signe	
Point d'inflexion de f	Extremum local de f'	f'' = 0 $f'' change de signe$

Résumé 3: Tangentes

Fonction f	Dérivée f ′	Dérivée seconde f "
\mathcal{C}_f admet en $x=a$ une tangente \mathcal{T}	Le nombre dérivé $f'(a)$ est le coefficient	
de coefficient directeur $f'(a)$	directeur de la tangente.	
et d'équation :	Graphiquement, on détermine à partir	
$y = f'(a) \times (x - a) + f(a)$	de 2 points de la tangente : $f'(a) = \frac{\Delta_y}{\Delta_x}$	
Convexité de <i>f</i>		
<i>f</i> convexe	Variation de f'	Signe de f''
\mathcal{C}_f est AU DESSUS de ses tangentes	f ′ ♪	$f'' \ge 0 (+)$
f concave	<i>f'</i> >	$f'' \le 0 (-)$
\mathcal{C}_f est EN DESSOUS de ses tangentes		