Savoir SF. 5 Relation de récurrence - calcul de termes

Exercice 12: Calcul de termes

- 1) On donne la suite (u_n) définie par son 1^{er} terme $u_0=21$ et la relation de récurrence : $u_{n+1}=1,5u_n$ Calculer les termes u_1 et u_3
- **2)** On donne la suite (v_n) définie par son $\mathbf{1}^{\rm er}$ terme $v_1=300$ et la relation de récurrence : $v_{n+1}=v_n-35$ Calculer les termes v_2 et v_4
- **3)** On donne la suite (w_n) définie par son 1^{er} terme $w_0=17$ et la relation de récurrence : $w_{n+1}=4w_n-11$
- **a.** Calculer les termes w_1 et w_3
- **b.** Reprendre la même question qu'au (a), mais en prenant cette fois $w_0=3$

- **4)** On donne la suite (a_n) définie par son 1^{er} terme $a_0=2$ et la relation de récurrence : $a_{n+1}=15+2a_n$ Calculer les termes a_1 et a_3
- **5)** On donne la suite (b_n) définie par son 1^{er} terme $b_1=100$ et la relation de récurrence : $b_{n+1}=0.5b_n+1.5$
- **a.** Calculer les termes b_2 et b_4
- **b.** Reprendre la même question qu'au (a), mais en prenant cette fois $b_1=3$

Exercice 13: Utilisation de la calculatrice

1) On donne la suite (s_n) définie par son $1^{\rm er}$ terme $s_0=20$ et la relation de récurrence :

$$s_{n+1} = 0.8s_n + 10$$

a. À l'aide de la calculatrice, compléter le tableau cidessous.

n	0	1	2	3	4
s_n					

b. À partir de quel rang la suite dépasse-t-elle 45 ?

2) On donne la suite (t_n) définie par son 1^{er} terme $t_1=4$ et la relation de récurrence :

$$t_{n+1} = 40 - 2t_n$$

À l'aide de la calculatrice, compléter le tableau :

n	1	2	3	4	5
t_n					

Exercice 14: Dans un contexte

- 1) On étudie le nombre d'abonnement internet à très haut débit en France à partir du 1^{er} trimestre 2016. On modélise ainsi l'évolution de ce nombre d'abonnement à l'aide d'une suite (u_n) où u_n représente le nombre d'abonnement internet à très haut débit en millions au n-ième trimestre à partir de début 2016. On a alors $u_1 = 5,43$ et on modélise par la relation de récurrence $u_{n+1} = 1,06u_n$.
- **a.** Calculer u_2 et interpréter le résultat dans le contexte.
- b. À l'aide de la calculatrice, compléter le tableau ci-dessous (arrondir au centième près)

n	1	2	3	4	5	6	7	8
u_n								

c. Un journal titre un article « Plus de 8 millions d'abonnés à l'internet très haut débit au 1^{er} janvier 2018 ». Qu'en pensez-vous ?

2) Afin de se constituer un capital, un épargnant place le 1^{er} janvier 2016 un montant de 1 000 € sur un compte non rémunéré et, chaque mois, verse 75 € sur ce compte.

On note C_n le montant en euros du capital accumulé au bout de n mois. Ainsi $C_0 = 1\,000$.

- **a.** Calculer C_1 et C_3 puis interpréter les résultats dans le contexte de l'exercice.
- **b.** On modélise la suite par C_n par la relation de récurrence $C_{n+1} = C_n + 75$. Quel capital a-t-il accumulé au bout d'un an ?

Ex. de synthèse n° 5 Extrait N^{elle} Calédonie 2015

Jean envisage de mettre de l'argent de côté en vue d'un achat. Il imagine deux plans d'épargne sur 12 mois.

Plan 1 : le premier versement mensuel est de 400 € et, chaque mois, les versements mensuels diminuent de 30 € par rapport au mois précédent.

Plan 2 : le premier versement mensuel est de 400 € et, chaque mois, les versements mensuels diminuent de 10% par rapport au mois précédent.

- **1.** On note u_n le montant du n-ième versement mensuel du **plan 1**. Ainsi on a : $u_1=400$
 - **a.** Calculer u_2 et interpréter dans le contexte le résultat.
 - **b.** On modélise la suite par la relation de récurrence $u_{n+1}=u_n-30$. Compléter la colonne B du tableau de **l'annexe ci-dessous**
- **2.** On note v_n lemontant du n- ième versement mensuel du **plan 2**. Ainsi on $v_1=400$
 - **a.** Calculer v_2 et interpréter dans le contexte le résultat.
 - **b.** On modélise la suite par la relation de récurrence $v_{n+1}=0.9v_n$ À l'aide de la calculatrice, compléter la colonne C du tableau de **l'annexe**. On arrondira les résultat au centime d'euro.
- 3. Quel est le plan qui assure à Jean la somme épargnée la plus élevée ? Expliquer la réponse.

Annexe à compléter

	٨	D	6
	А	В	С
1		Plan 1	Plan 2
2	1er versement mensuel	400	400
3	2e versement mensuel		
4	3e versement mensuel		
5	4e versement mensuel		
6	5e versement mensuel		
7	6e versement mensuel		
8	7e versement mensuel		
9	8e versement mensuel		
10	9e versement mensuel		
11	10e versement mensuel		
12	11e versement mensuel		
13	12e versement mensuel		
14	TOTAL		2 870,28