Savoirs Fc. 5 : Convexité et tangente

Exercice 11: A partir d'un tableau

Soit f une fonction définie et dérivable sur \mathbb{R} . On donne le tableau de signe de la dérivé seconde f''.

x	-∞		-5		-1		1		+∞
f''(x)		+	0	_	0	_	0	+	

Un peu plus...

3) On considère la fonction f définie pour

 $f(x) = x^3 + 1.5x^2 - 6x - 1$

c) Dresser le tableau de signe de f''. En

déduire la convexité de la fonction f. d) Sur quel intervalle la courbe de f est au

tout réel x par :

a) Calculer f'(x)

b) Calculer f''(x)

dessus de ses tangentes?

- 1) Indiquer sur quels intervalle la fonction f est convexe ou concave.
- 2) Donner les abscisses des points d''inflexion de \mathcal{C}_f , courbe représentative de f
- 3) On note \mathcal{T}_2 la tangente à \mathcal{C}_f au point d'abscisse x=2 et \mathcal{T}_{-3} la tangente au point d'abscisse x=-3. Déterminer la position relative de \mathcal{C}_f et de \mathcal{T}_2 sur l'intervalle $[1;+\infty[$, ainsi que celle de \mathcal{C}_f et de \mathcal{T}_{-3} sur l'intervalle [-5;-1].

Exercice 12 : Étude de convexité

1) On considère une fonction H définie sur $\mathbb R$ dont la dérivée seconde H'' est donnée par :

$$H''(x) = (x^2 + 5x + 6)(2x - 8)e^{-2x}$$

- a) Décrire la convexité de la fonction H.
- **b)** Combien la courbe de H a-t-elle de points d'inflexion ? Quelles sont leurs abscisses ?
- ${\bf c}$) En déduire la position de la courbe de ${\cal H}$ par rapport à ses tangentes.
- **2)** On considère la fonction g définie sur $\mathbb{R}\setminus\{0\}$ par :

$$g(x) = \frac{x^2 - 5x + 1}{x^2}$$

a) On appelle g^\prime est la dérivée de la fonction g.

Montrer que :
$$g'(x) = \frac{5x-2}{x^3}$$

- **b)** On appelle g'' est la dérivée seconde de la fonction g. Montrer que : $g''(x) = \frac{6-10x}{x^4}$
- c) En déduire la convexité de la fonction g.
- **d)** Sur quel intervalle la courbe de g est-elle en dessous de ses tangentes ?

Exercice 13: Étude de fonctions

Soit f la fonction définie sur \mathbb{R} par : $f(x) = x e^{x^2-1}$

Cf est la courbe représentative de la fonction f dans un repère orthonormé du plan. On note f' la fonction dérivée de f et f'' la fonction dérivée seconde de f.

- **1. a.** Montrer que pour tout réel x, $f'(x) = (2x^2 + 1)e^{x^2-1}$
 - **b.** En déduire le sens de variation de f sur \mathbb{R} .
- **2.** On admet que pour tout réel x, $f''(x) = 2x(2x^2 + 3)e^{x^2-1}$

Déterminer, en justifiant, l'intervalle sur lequel la fonction f est convexe.

Exercice 14: Sujet Bac (1)

On considère la fonction f définie sur]0; $+\infty$ [par : $f(x) = 3x - 3x\ln(x)$

On note \mathscr{C}_f sa courbe représentative dans un repère orthonormé et T la tangente à \mathscr{C}_f au point d'abscisse 1.

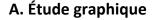
Quelle est la position relative de \mathscr{C}_f par rapport à T?

Exercice 15: Sujet Bac (2)

On injecte à un patient un médicament et on mesure régulièrement, pendant 15 heures, la concentration, en

grammes par litre, de ce médicament dans le sang.

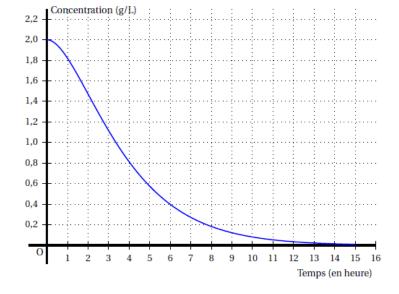
On obtient la courbe fournie ci-contre.



On fera apparaitre sur le graphique les traits de construction nécessaires.

Avec la précision permise par le graphique, indiquer

- 1. la concentration à l'instant initial
- 2. l'intervalle de temps pendant lequel la concentration est supérieure ou égale à 0,4 gramme par litre.



B. Étude théorique

On admet que la concentration peut être modélisée par la fonction f définie sur l'intervalle [0 ; 15] par

$$f(x) = (x+2)e^{-0.5x}$$

où x représente le nombre d'heures écoulées depuis l'instant initial et f(x) la concentration, en grammes par litre, du médicament dans le sang.

- **1.** On note f' la fonction dérivée de la fonction f . Justifier que $f'(x) = -0.5xe^{-0.5x}$ et en déduire le tableau de variation de la fonction f sur [0; 15].
- **2.** Justifier que l'équation f(x) = 0.1 admet une unique solution α sur l'intervalle [0;15].
- **3.** Déterminer un encadrement de α d'amplitude un dixième.
- 4. Un logiciel de calcul formel donne le résultat ci-dessous :

1	deriver $((x+2) * \exp(-0.5 * x))$	
		$\exp(-0.5x) - 0.5 * \exp(-0.5x) * (x+2)$
2	deriver $(\exp(-0.5*x) - 0.5*\exp(-0.5*x)*(x+2))$	
		$-\exp(-0.5*x) + 0.25*\exp(-0.5*x)*(x+2)$
3	factoriser $(-\exp(-0.5*x) + 0.25*\exp(-0.5*x)*(x+2))$	
		$(0.25*x-0.5)*\exp(-0.5*x)$

En vous appuyant sur ces résultats, étudier la convexité de la fonction f sur l'intervalle [0 ; 15] et préciser l'abscisse d'un éventuel point d'inflexion.

C. Interprétation des résultats

En vous aidant des résultats obtenus, soit dans la partie B, soit par lecture graphique et sans justifier, répondre aux questions ci-dessous.

- **1.** On estime que le médicament n'est plus actif lorsque la concentration est strictement inférieure à 0,1 gramme par litre. Pendant combien de temps le médicament est-il actif ?
- 2. Au bout de combien d'heures la baisse de concentration ralentit-elle ?