Corrigé Exercice 4

1) a. $u_1 = 13, u_2 = 73$ et $u_3 = 373$ puis $v_0 = 3$, $v_1 = 15$, $v_2 = 75$ et $v_3 = 375$

b.
$$v_{n+1} = u_{n+1} + 2 = (5u_n + 8) + 2$$

= $5(v_n - 2) + 10 = 5v_n + 10 - 10$
= $5v_n$

La suite (v_n) est une suite géométrique de raison 5 et de premier terme $v_0=3$

c.
$$v_n = 3 \times 5^n$$

d.
$$u_n = v_n - 2$$
 donc $u_n = 3 \times 5^n - 2$

2) a. on a $u_n = v_n + 25$ Et $v_{n+1} = u_{n+1} - 25 = (1,6u_n - 15) - 25$ $= 1,6(v_n + 25) - 40 = 1,6v_n + 40 - 40$ $= 1,6v_n$

la suite (v_n) est géométrique, de raison 1,6 et de premier terme $v_0=u_0-25=800-25=775$

b. on a alors : $v_n = 775 \times 1,6^n$, et par conséquent $u_n = v_n + 25$ donc $u_n = 775 \times 1,6^n + 25$.

Un peu plus...

4) a. $u_1 = 0.9 \times 110 + 3 = 129$ \Rightarrow 129 exposants sont attendus pour 2013

b. Si chaque année 90% des exposants se réinscrivent, **cela revient à multiplier le nombre d'inscrits de l'année précédente par 0,9** (soit $0,9u_n$). Comme de plus on ajoute 30 nouveaux inscrits chaque année, on a bien : $u_{n+1} = 0,9u_n + 30$.

c.
$$v_n = u_n - 300$$
 donc $u_n = v_n + 300$

$$v_{n+1} = u_{n+1} - 300$$

$$= (0.9u_n + 30) - 300$$

$$= 0.9(v_n + 300) - 270$$

$$= 0.9v_n + 270 - 270$$

$$= 0.9v_n$$

La suite (v_n) est une suite géométrique de raison 0,9.

Son premier terme est:

$$v_0 = u_0 - 300 = -190$$

d. On a $v_n = v_0 \times q^n = -190 \times 0.9^n$

Et
$$u_n = v_n + 300$$

$$u_n = -190 \times 0, 9^n + 300$$

3) a.
$$u_0 = 6$$
; $u_1 = \frac{1}{2} \times 6 + 1 = 4$ et $u_2 = 3$ et $v_0 = 6 - 2 = 4$; $v_1 = 2$ et $v_2 = 1$

b.
$$v_{n+1} = u_{n+1} - 2 = \frac{1}{2}u_n + 1 - 2 = \frac{1}{2}(v_n + 2) - 1 = \frac{1}{2}v_n + 1 - 1 = \frac{1}{2}v_n$$

La suite v est géométrique de raison $\frac{1}{2}$ et de premier terme $v_0=4$

c.
$$v_n = v_0 \times q^n = 4 \times \left(\frac{1}{2}\right)^n$$
 d. $u_n = v_n + 2 = 4 \times \left(\frac{1}{2}\right)^n + 2$

Corrigé Exercice 5

1) a.
$$u_0 = -1$$
; $u_1 = \frac{-1}{-2+1} = 1$; $u_2 = \frac{1}{3}$ et $v_0 = -1$; $v_1 = 1$ et $v_2 = 3$

b.
$$v_{n+1} = \frac{1}{u_{n+1}} = \frac{2u_n + 1}{u_n} = \frac{2\left(\frac{1}{v_n}\right) + 1}{\frac{1}{v_n}} = \frac{\frac{2 + v_n}{v_n}}{\frac{1}{v_n}} = 2 + v_n$$

La suite v est **arithmétique** de raison 2 et de premier terme $v_0=-1$

c.
$$v_n = v_0 + nR = -1 + 2n$$
 d. $u_n = \frac{1}{v_n} = \frac{1}{2n-1}$

2) a.
$$b_{n+1} = a_{n+1} - (n+1) = \frac{2}{3}a_n + \frac{1}{3}n + 1 - n - 1 = \frac{2}{3}a_n - \frac{2}{3}n = \frac{2}{3}(a_n - n) = \frac{2}{3}b_n$$
 (b_n) est bien une suite géométrique de raison $\frac{2}{3}$ et de premier terme $b_1 = a_1 - 1 = 2 - 1 = 1$

b.
$$a_n = b_n + n = b_1 \times q^{n-1} + n = 1 \times \left(\frac{2}{3}\right)^{n-1} + n = \left(\frac{2}{3}\right)^{n-1} + n$$

Un peu plus...

3) a.
$$u_1 = \frac{u_0 + v_0}{2} = \frac{3+4}{2} = \frac{7}{2}$$
; $v_1 = \frac{u_1 + v_0}{2} = \frac{\frac{7}{2} + 4}{2} = \frac{15}{4}$; $u_2 = \frac{29}{8}$ et $v_2 = \frac{59}{16}$

b.
$$a_{n+1} = v_{n+1} - u_{n+1} = \frac{u_{n+1} + v_n}{2} - \frac{u_n + v_n}{2} = \frac{u_{n+1} - u_n}{2} = \frac{1}{2} \left(\frac{u_n + v_n}{2} - u_n \right) = \frac{1}{2} \left(\frac{v_n - u_n}{2} \right) = \frac{1}{4} \left(v_n - u_n \right) = \frac{1}{4} a_n$$

 (a_n) est bien une suite géométrique de raison $\frac{1}{4}$ et de 1^{er} terme $a_0=v_0-u_0=1$ $b_0=\frac{u_0+2v_0}{3}=\frac{11}{3}$

$$b_{n+1} = \frac{1}{3}(u_{n+1} + 2v_{n+1}) = \frac{1}{3}\left(\frac{u_n + v_n}{2} + 2 \times \frac{u_{n+1} + v_n}{2}\right) = \frac{1}{3}\left(\frac{u_n + v_n}{2} + \frac{u_n + v_n}{2} + v_n\right) = \frac{1}{3}(u_n + 2v_n) = b_n$$

 (b_n) est bien une suite stationnaire égale à son premier terme $b_0 = \frac{u_0 + 2v_0}{3} = \frac{11}{3}$

c.
$$a_n = a_0 \times q^n = 1 \times \left(\frac{1}{4}\right)^n = \frac{1}{4^n}$$
 et $b_n = \frac{11}{3}$

d. On cherche à résoudre le système $\begin{cases} a_n = v_n - u_n \\ b_n = \frac{u_n + 2v_n}{3} \end{cases}$ pour trouver u_n et v_n en fonction de a_n et de b_n

$$\begin{cases} \frac{1}{4^n} = v_n - u_n \\ \frac{11}{3} = \frac{u_n + 2v_n}{3} \end{cases} \Leftrightarrow \begin{cases} u_n = v_n - \frac{1}{4^n} \\ 11 = \left(v_n - \frac{1}{4^n}\right) + 2v_n \end{cases} \Leftrightarrow \begin{cases} u_n = v_n - \frac{1}{4^n} \\ 3v_n = 11 + \frac{1}{4^n} \end{cases} \Leftrightarrow \begin{cases} u_n = \frac{11}{3} + \frac{1}{3 \times 4^n} - \frac{1}{4^n} \\ v_n = \frac{11}{3} + \frac{1}{3 \times 4^n} \end{cases} \Leftrightarrow \begin{cases} u_n = \frac{11}{3} - \frac{2}{3 \times 4^n} \\ v_n = \frac{11}{3} + \frac{1}{3 \times 4^n} \end{cases}$$