Savoir Sag. 7: Limites

Entraînement n°1

Donner la limite de chacune de ces suites.

- 1) La suite (t_n) est définie par l'expression : $t_n = 27 4(n-1)$
- 2) La suite (a_n) est définie par la relation de récurrence : $\begin{cases} a_{n+1} = \frac{5a_n}{3} \\ a_1 = 60 \end{cases}$
- 3) (b_n) est une suite géométrique de 1^{er} terme $b_0=-20$ et de raison q=0,7.
- **4)** La suite (c_n) est définie par la l'expression : $c_n = -260 \times 1{,}05^{n-1}$

Entraînement n°2

Donner la limite de chacune de ces suites.

- 1) La suite (v_n) est définie par la l'expression : $v_n = 260 \times 0.6^{n-1}$
- **2)** (C_n) est une suite arithmétique de 1^{er} terme $C_2 = -40$ et de raison R = 130.
- 3) La suite (a_n) est définie par la relation de récurrence : $\begin{cases} a_n = \frac{3a_{n-1}}{7} \\ a_1 = 25 \end{cases}$
- **4)** (u_n) est une suite géométrique de 1^{er} terme $u_0=-900$ et de raison q=1,5.

Entraînement n°3

Donner la limite de chacune de ces suites.

- 1) (u_n) est une suite géométrique de 1er terme $u_0=1500$ et de raison q=0.59.
- **2)** La suite (v_n) est définie par la l'expression : $v_n = 500 \times \left(\frac{7}{3}\right)^{n-1}$
- 3) La suite (z_n) est définie par la l'expression : $z_n = 12 8n$
- **4)** La suite (a_n) est définie par la relation de récurrence : $\begin{cases} a_n = \frac{a_{n-1}}{9} \\ a_1 = -236 \end{cases}$

Savoir Sag. 7: Corrigés

Corrigé Entraînement n°1

- 1) La suite (t_n) est une suite arithmétique de raison négative -4 donc $\lim_{n \to +\infty} t_n = -\infty$
- 2) La suite (a_n) est une suite géométrique de 1^{er} terme positif et de raison $q=\frac{5}{3}>1$. Donc $\lim_{n\to+\infty}v_n=+\infty$
- 3) La suite (a_n) est une suite géométrique de 1^{er} terme négatif et de raison 0 < q < 1. Donc $\lim_{n \to +\infty} a_n = 0$
- 4) (u_n) est une suite géométrique de 1^{er} terme négatif et de raison q=1,05>1. Donc $\lim_{n\to+\infty}u_n=-\infty$

Corrigé Entraînement n°2

- 1) La suite (v_n) est une suite géométrique de 1^{er} terme positif et de raison $q \in]0;1[$. Donc $\lim_{n \to +\infty} v_n = 0$
- 2) (C_n) est arithmétique et a une raison positive. Donc $\lim_{n\to+\infty} C_n = +\infty$
- 3) La suite (a_n) est une suite géométrique de 1^{er} terme positif et de raison $q=\frac{3}{7}\in]0;1[$. Donc $\lim_{n\to +\infty}a_n=0$
- 4) (u_n) est une suite géométrique de 1^{er} terme négatif et de raison $q>1 \Rightarrow \lim_{n\to +\infty} u_n=-\infty$

Corrigé Entraînement n°3

- 1) (u_n) est une suite géométrique de 1^{er} terme positif et de raison $q \in]0;1[\Rightarrow \lim_{n \to +\infty} u_n = 0$
- 2) La suite (v_n) est géométrique de 1^{er} terme positif et de raison $q = \frac{7}{3} > 1 \Rightarrow \lim_{n \to +\infty} v_n = +\infty$
- 3) La suite (z_n) est arithmétique de 1^{er} terme $z_0=12$ et de raison négative R=-8 Donc $\lim_{n\to+\infty} \mathbf{z}_n=-\infty$
- 4) La suite (a_n) est géométrique de 1^{er} terme négatif et de raison $q = \frac{1}{9} \in]0; 1[\Rightarrow \lim_{n \to +\infty} a_n = 0]$