Corrigés Savoirs Fc. 1

Corrigé Exercice 1

Fonction f: définie sur [-3;3]; continue sur [-3;3] et dérivable sur $[-3;-2[\cup]-2;3]$ (car non dérivable en -2)

Fonction g: définie sur [-3; 3]; continue sur $[-3; 1[\cup]1; 3]$ (car non continue en 1) et par conséquent dérivable sur $[-3; 1[\cup]1; 3]$

Fonction h: définie sur [-3; 3]; continue sur [-3; 3] et dérivable sur $]-3; 1, 5[\cup]1, 5; 3[$

Fonction i: définie sur $[-3;0] \cup [1;3]$; continue sur $[-3;0] \cup [1;3]$ et dérivable sur $[-3;0] \cup [1;3]$

Corrigé Exercice 2

1) a) sur [-7; -2]:

- f est continue

- f est strictement croissante

- on a $3 \in [f(-7); f(-2)]$

D'après le théorème des valeurs intermédiaires, l'équation

f(x) = 3 a donc une seule solution sur [-7; -2]

sur[-2;1]:

on a f(x) > 3

donc $3 \notin [f(-2); f(1)]$

donc l'équation f(x) = 3 n'admet pas de solution sur [-2; 1]

sur [1; 4]:

- f est continue

- f est strictement décroissante

- on a $3 \in [f(4); f(1)]$

D'après le théorème des valeurs intermédiaires,

I'équation f(x) = 3 a donc une seule solution sur [1; 4]

L'équation f(x) = 3 a donc en tout deux solutions : $\alpha \in]-7$; -2[et $\beta \in]1$; 4[.

b) sur [-7; -2]:

- f est continue

- f est strictement croissante

- on a $-2 \in [f(-7); f(-2)]$

D'après le théorème des valeurs intermédiaires,

l'équation f(x) = -2 a donc une seule solution sur [-7; -2]

sur [-2; 1]: on a f(x) > -2

Donc l'équation f(x) = -2 n'admet pas de solution sur

[-2; 1]

sur [1; 4]:

on a f(x) > -2

Donc l'équation f(x) = -2

n'admet pas de solution sur

[1; 4]

Donc au final l'équation f(x) = -2 n'a qu'une seule solution, qui se situe dans l'intervalle] - 7; -2[.

- c) L'ensemble des solutions de l'équation f(x) = 4 est S = [-2; 1], car f est constante et égale à 4 sur cet intervalle.
- **d)** f est continue sur [-7;2] mais pour tout $x \in [-7;4]$, on a $f(x) \ge -3$ donc l'ensemble des solutions de l'équation f(x) = -6 est $S = \emptyset$.
- **2) a)** $e^{0.4} 2 \simeq -0.5$ donc f(2) < 2.

Il n'y a pas de solution sur l'intervalle [0; 2]

f est continue et strictement décroissante sur [-10; 0], avec $2 \in [f(-10); f(0)]$

D'après le théorème des valeurs intermédiaires, l'équation f(x)=2 admet une unique solution α sur l'intervalle [-10;1].

- **b)** à la calculatrice, par balayages successifs, on trouve : $\alpha \simeq -3,72$
- 1) a) La fonction f est continue et strictement croissante sur [0; 5], avec $9 \in [f(0); f(5)]$ D'après le théorème des valeurs intermédiaires, l'équation f(x) = 9 admet une unique solution α sur l'intervalle [0; 5].
- **b)** Par balayage, on trouve : $\alpha \simeq 0,65$

Corrigé Exercice 3

1) a) f(0) = 1 et f(1) = 1 - 3 + 1 = -1.

b) On a
$$f'(x) = 3x^2 - 6x = 3x(x-2)$$

c) f est continue et strictement décroissante sur [0;1] et on a $0 \in [f(1); f(0)]$

D'après le thm des valeurs intermédiaires, l'équation f(x) = 0 a donc une solution et une seule sur l'intervalle [0; 1].

х	0		1
3x	0	+	
x-2		-	
f'(x)	0	-	
f(x)	1	Ŋ	-1

2) a. La fonction f est continue et strictement croissante sur [0; 3], avec $6 \in [f(0); f(3)]$. D'après le théorème des valeurs intermédiaires, l'équation f(x) = 6 admet une unique solution α sur [0; 3].

b. On trouve $\alpha \simeq 2$, 17

3) a)
$$f'(x) = 3x^2 + 12x + 9$$
 0 avec $\Delta = 36$ donc $x_1 = -1$ et $x_2 = -3$ On a $f(-1) = -1$ et $f(-3) = 3$

b) f est continue sur \mathbb{R} , elle est strictement croissante sur [-1;1]

Х	-∞	-4		-3		-1		1	+∞
f'(x)	+		+	0	-	0	+		+
h(x)	7	-1	7	3	7	-1	7	19	7

avec $10 \in [f(-1); f(1)]$, donc, d'après le théorème des valeurs intermédiaires, l'équation f(x) = 10a une unique solution sur [-1;1]

Par ailleurs, sur [-4; -1], on a $f(x) \le 3$ donc l'équation f(x) = 0 n'y a aucune solution.

c) Pour $m \in [3; 19]$ l'équation f(x) = m a une solution unique sur [-4; 1]Pour $m \in]-1; 3[$ l'équation a **trois** solutions sur [-4; 1]Pour m = -1 ou pour m = 3, l'équation a **deux** solutions sur [-4; 1]Et pour m < -1 ou m > 19, l'équation n'a pas de solutions

4) ATTENTION! absolument pas besoin du TVI pour cet exercice © il s'agit d'une équation qu'on sait parfaitement résoudre !!! Pour $x \ne 0$, on a $x + \frac{1}{x} = 3 \Leftrightarrow x^2 + 1 = 3x \Leftrightarrow x^2 - 3x + 1 = 0$ avec $\Delta = 5$ et donc deux solutions $x_1 = \frac{3+\sqrt{5}}{2} \simeq 2$, 6 et $x_2 = \frac{3-\sqrt{5}}{2} \simeq 0$, 4 et c'est fini...

Bon, comme vous avez dû foncer sur le TVI, je vous mets quand même la correction...

h est continue et dérivable sur \mathbb{R}^* comme somme de fonctions continues et dérivables sur \mathbb{R}^*

$$h'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2} = \frac{(x+1)(x-1)}{x^2}$$

On a $h(-1) = -2$ et $h(1) = 2$

Sur $\left[\frac{1}{4}; 1\right]$ la fonction h est strictement décroissante et on a $h\left(\frac{1}{4}\right) > 3 > h(1)$. D'après le théorème des

valeurs intermédiaires, l'équation h(x) = 3 y admet une unique solution x_1

De même, sur l'intervalle [1; 4], h est strictement croissante et h(1) < 3 < h(4), donc l'équation h(x) = 3 y admet une **unique solution** x_2

Х	-∞	-1		0		1	+∞
$x^2 - 1$	+	0	-		-	0	+
X ²	+		+	0	+		+
h'(x)	+	0	-		_	0	+
h(x)	7	-2	7		7	2	7

À la calculatrice, on trouve $x_1 \simeq 0.4$ (car h(0.38) > 3 > h(0.39)) et $x_2 \simeq 2,6$ (car h(2,61) < 3 < h(2,62))

Un peu plus long, non?