Savoirs Fc. 2: Applications du TVi

Exercice 4: Recherche du signe d'une fonction

1) On donne le tableau de variation de f

x	2		13
f(x)	8	>	-2

- a) Démontrer que l'équation f(x) = 0 possède une seule solution sur l'intervalle [2 ; 13]. On la notera a.
- **b)** Donner le tableau de signe de la fonction f sur [2 ; 13].
- **2)** On considère la fonction g définie sur [-2;6], par : $g(x) = 1 + 3xe^{-0.5x}$

On donne le tableau de variation de la dérivée g' de g.

Déterminer le tableau de signe de g' puis le tableau de variation de g sur [-2; 6], en précisant les notations utilisées

Un peu plus...

2) On considère la fonction g définie sur [-1; 2] par :

$$g(x) = 6x^2 - 2x^3 - 2$$

- a) Montrer que l'équation g(x)=0 possède sur [-1;2] deux solutions qu'on notera α et β .
- **b)** En déduire le tableau de signe de la fonction g.

х	-2		4		6
g'(x)	6e	7	$-3e^{-2}$	7	$-6e^{-3}$

- **3)** Soit f la fonction définie sur [0;5] par : $f(x) = \frac{1}{2}x^2 \ln(x^2 + 1)$
 - a) Calculer f'(x) et dresser le tableau de variation de f sur [0;5]
 - **b)** Montrer que l'équation f(x) = 0 admet deux solutions sur [0; 5] et donner un encadrement de la solution non entière α d'amplitude 10^{-2} .
 - c) Déterminer le signe de f(x) selon les valeurs de x.

Exercice 5: Résolution d'équations

- 1) On cherche à résoudre l'équation $(E_1): 2x^3 + 5 = 6x^2$ pour $x \in [0; 2]$.
- **a.** Montrer que la fonction $f(x) = 2x^3 6x^2 + 5$ est strictement décroissante sur [0; 2].
- **b.** En déduire que l'équation (E_1) admet une unique solution sur [0; 2].
- c. Donner une valeur approchée à $10^{-3}\,\mathrm{près}$ de cette solution

Un peu plus...

- 2) On cherche à résoudre l'équation (E_2) : $x^4 + 10 = 8x^2$ pour $x \in [0; 5]$.
- **a.** Montrer que (E_2) admet uniquement deux solutions α et β sur [0;5]
- **b.** Donner une valeur approchée de ces solutions au centième près

Exercice 6: Extraits de bac: Pondichéry 2015

Partie A : Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{3}{1 + e^{-2x}}$

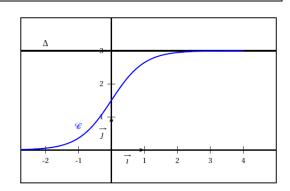
Sur le graphique ci-contre, on a tracé, dans un repère orthogonal $(0,\vec{\imath},\vec{j})$, la courbe représentative $\mathcal C$ de la fonction f et la droite Δ d'équation y=3.

- **1.** Montrer que la fonction f est strictement croissante sur \mathbb{R} .
- **3.** Démontrer que l'équation f(x) = 2,999 admet une unique solution α sur \mathbb{R} .

Déterminer un encadrement de α d'amplitude 10⁻².

Partie B: Soit h la fonction définie sur \mathbb{R} par h(x) = 3 - f(x)

1. Justifier que la fonction h est positive sur \mathbb{R} . Que peut-on en déduire pour \mathcal{C} et Δ ?



Exercice 7: Extrait de bac: Antilles 2016

On considère la fonction f définie pour tout réel x par : $f(x) = xe^{1-x^2}$

Partie A

2. a. On admet que f est dérivable sur \mathbb{R} . Démontrer que pour tout réel x, $f'(x) = (1 - 2x^2)e^{1-x^2}$

b. En déduire le tableau de variations de la fonction f .

On considère la fonction g définie pour tout réel x par $g(x) = e^{1-x}$.

Sur le graphique ci-contre, on a tracé dans un repère les courbes représentatives \mathcal{C}_f et \mathcal{C}_q .

Le but de cette partie est d'étudier la position relative de ces deux courbes.

1. Après observation du graphique, quelle conjecture peut-on émettre ?

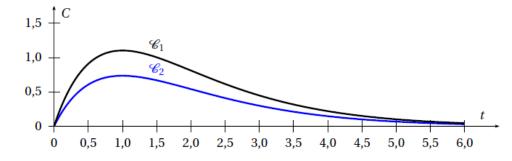
2. Justifier que, pour tout réel x appartenant à $]-\infty$; 0], f(x) < g(x).

Exercice 8: Un sujet de bac (presque complet): Polynésie 2016

Partie A

Voici deux courbes \mathcal{C}_1 et \mathcal{C}_2 qui donnent pour deux personnes P_1 et P_2 de corpulences différentes la concentration \mathcal{C} d'alcool dans le sang (l'alcoolémie) en fonction du temps t après ingestion de la même quantité d'alcool. L'instant t=0 correspond au moment où les deux individus ingèrent l'alcool. \mathcal{C} est exprimée en gramme par litre et t en heure.

Définition : La corpulence est le nom scientifique correspondant au volume du corps



1. La fonction C est définie sur l'intervalle $[0; +\infty[$ et on note C' sa fonction dérivée. À un instant t positif ou nul, la vitesse d'apparition d'alcool dans le sang est donnée par C'(t).

À quel instant cette vitesse est-elle maximale?

On dit souvent qu'une personne de faible corpulence subit plus vite les effets de l'alcool.

2. Sur le graphique précédent, identifier la courbe correspondant à la personne la plus corpulente. Justifier le choix effectué.

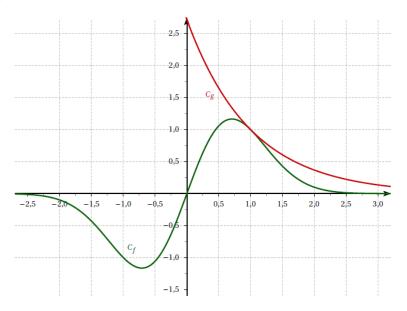
3. Une personne à jeun absorbe de l'alcool. On admet que la concentration $\mathcal C$ d'alcool dans son sang peut être modélisée par la fonction f définie sur $[0\,;\,+\infty[$ par $f(t)=Ate^{-t}$

où A est une constante positive qui dépend de la corpulence et de la quantité d'alcool absorbée.

a. On note f' la fonction dérivée de la fonction f. Déterminer f'(0).

b. L'affirmation suivante est-elle vraie?

« À quantité d'alcool absorbée égale, plus A est grand, plus la personne est corpulente. »



Partie B - Un cas particulier

Paul, étudiant de 19 ans de corpulence moyenne et jeune conducteur, boit deux verres de rhum. La concentration C d'alcool dans son sang est modélisée en fonction du temps t, exprimé en heure, par la fonction f définie sur $[0; +\infty[$ par $f(t)=2te^{-t}$

- **1.** Étudier les variations de la fonction f sur l'intervalle $[0; +\infty[$.
- **2.** À quel instant la concentration d'alcool dans le sang de Paul est-elle maximale ? Quelle est alors sa valeur ? Arrondir à 10^{-2} près.
- **4.** Paul veut savoir au bout de combien de temps il peut prendre sa voiture. On rappelle que la législation autorise une concentration maximale d'alcool dans le sang de 0,2 g.L⁻¹ pour un jeune conducteur.
 - **a.** Démontrer qu'il existe deux nombres réels t_1 et t_2 tels que $f(t_1)=f(t_2)=0$,2.
 - **b.** Quelle durée minimale Paul doit-il attendre avant de pouvoir prendre le volant en toute légalité ? Donner le résultat arrondi à la minute la plus proche.