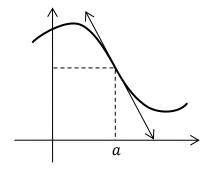
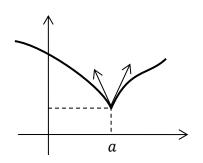
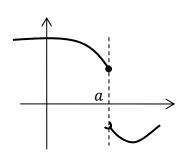
Continuité







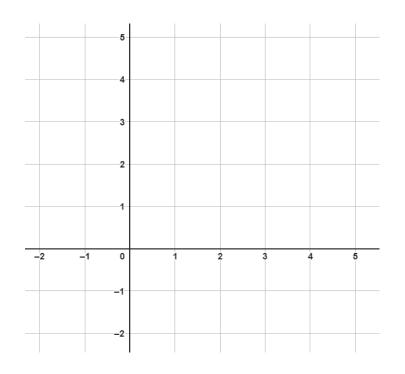
Un exemple inhabituel La partie entière d'un nombre

Notation : E(x)

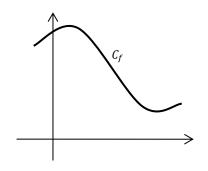
Définition :

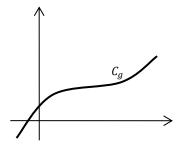
Pour $x \in [n \; ; \; n+1[$, avec $n \in \mathbb{Z}$

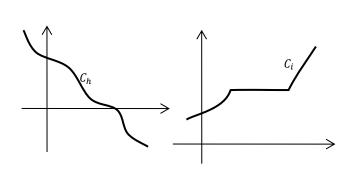
on définit E(x) =



Monotonie



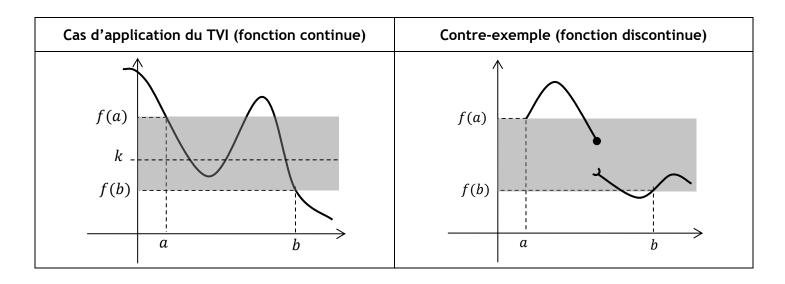




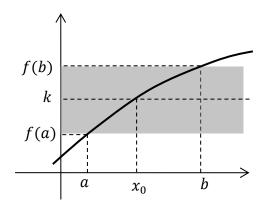
Théorème des valeurs intermédiaires (TVI)

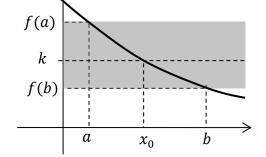
Soit f une fonction <u>continue</u> sur l'intervalle [a;b]. Pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k a au moins une solution dans [a;b]

Traduction : f est continue, donc elle passe par toutes les valeurs entre f(a) et f(b) Il existe au moins une solution $x_0 \in [a;b]$ telle que $f(x_0) = k$



Corollaire du TVi: Cas d'une fonction strictement monotone





Cas d'une fonction croissante

f continue et strictement croissante sur [a;b] $k \in [f(a);f(b)]$ L'équation f(x)=k admet une <u>unique</u> solution $x_0 \in [a;b]$ On a $f(x_0)=k$

Cas d'une fonction décroissante

f continue et strictement décroissante sur [a;b] $k \in [f(b);f(a)]$ L'équation f(x)=k a une <u>unique</u> solution $x_0 \in [a;b]$. On a $f(x_0)=k$

Exemple à partir d'un tableau de variation

Tableau de variation de la fonction f aur [-5; 10]

ſ		_					10
	\boldsymbol{x}	-5		-3	8		10
				6			2
	f(x)		/			1	
	-	-2			0		

On cherche le nombre de solutions et les intervalles auxquels appartiennent ces solutions, pour les équations suivantes :

• Équation f(x) = -1

• Équation f(x) = 4

• Équation f(x) = 8

TVi - Approximation de solution

• Cas d'une fonction croissante

$$f(x) = x^3 + 3x - 5$$

$$f(\alpha) = 6$$
 $\alpha \in [0; 4]$

Recherche	Val. app. par défaut	Solution	Val. app. par excès	Arrondi	Précision de l'arrondi
Entre 0 et 4 , de pas 1	< α <				
$f(\)\simeq et f(\)\simeq$					
Entre et , de pas 0,1					
$f() \simeq et f() \simeq$		< α <			A l'unité près
Entre et , de pas 0,01					Au 10 ^e près
$f() \simeq et f() \simeq$	< α <				(0,1 ou 10 ⁻¹)
Entre et , de pas 0,001					Au 100 ^e près
$f() \simeq et f() \simeq$		< α <			(0,01 ou 10 ⁻²)
Entre et , de pas 0,0001					Au 1000 ^e près
$f() \simeq et f() \simeq$		< α <			(0,001 ou 10 ⁻³)

Au final : arrondi à 10^{-2} près de la solution de $f(x)=6 \Rightarrow \alpha \simeq$

• Cas d'une fonction décroissante

$$g(x) = e^{-x} - x$$

$$g(oldsymbol{eta}) = -4 \qquad oldsymbol{eta} \in [1;10]$$

Recherche	Val. app. par défaut	Solution	Val. app. par excès	Arrondi

Au final : arrondi à 10^{-3} près de la solution de $g(x)=6 \Rightarrow \beta \simeq$