II. Congruences modulo n

Introduction:

On cherche à ranger les nombres (à les catégoriser) par rapport à leur reste dans la division euclidienne par n

Par exemple, on range les nombres selon leur reste dans la division euclidienne par 3.

On a 3 restes possibles: 0 (les multiples), 1 et 2.

Reste 0	Reste 1	Reste 2	
0	1	2	
3	4	5	
6	7	8	
9	10	11	
12	13	14	
		•••	
Multiples de 3			
Forme $3k$	Forme $3k+1$	Forme $3k + 2$	
$x \equiv 0$ [3]	$x \equiv 1 [3]$	$x \equiv 2 [3]$	
x congrue à 0 modulo 3	x congrue à 1 modulo 3	x congrue à 2 modulo 3	

Faîtes le lien avec les angles sur le cercle trigonométrique : ils sont définis « à 2π près », c'està-dire qu'on retrouve le même point si on parcourt le cercle k fois (angle $+2k\pi$) Par ex: $\frac{13\pi}{3} = \frac{\pi}{3} + 2 \times 2\pi$ Ou aussi $\frac{13\pi}{3} \equiv \frac{\pi}{3} [2\pi]$

Si on connait la division euclidienne, on trouve la congruence

Exemples: $75 = 3 \times 24 + 2$ on en déduit $75 \equiv 2 [3]$ ou d'ailleurs $75 \equiv 2 [24]$

a. Définitions

1ère définition

Pour un entier $a \in \mathbb{Z}$ et un entier naturel $n \in \mathbb{N}$

Si a a pour reste r dans la division euclidienne par n, on dit que a congrue à r modulo n

Notations: $a \equiv r [n]$ ou $a \equiv r \mod (n)$

Conséquences : il existe un réel k tel que a = r + kn. Par ex, si $x \equiv 3$ [7], il existe k tel que x = 7k + 3

Exemples: **a.** $19 \equiv \cdots [3]$ **b.** $27 \equiv \cdots [8]$ **c.** $157 \equiv \cdots [10]$

d. $846 \equiv \cdots [2]$

Réponses : **a.** $19 \equiv 1 [3]$

b. $27 \equiv 3 [8]$ **c.** $157 \equiv 7 [10]$

d. $846 \equiv 0$ [2]

Les modulos 2, 10 et 5 sont très faciles (pairs ou impairs pour 2, chiffre des unités pour 10...) Dans un modulo 3, ou 9, le nombre a le même reste que la somme de ses chiffres (et ça se démontre)

Propriété a est un **multiple de** $n \Leftrightarrow II$ existe $k \in \mathbb{Z}$ tel que a = kn $a \equiv \mathbf{0} [n] \Leftrightarrow$

2ème définition

Soient deux entiers $a \in \mathbb{Z}$, $b \in \mathbb{Z}$ et un entier naturel $n \in \mathbb{N}$

a congrue à b modulo n si et seulement si a et b ont le même reste dans la division euclidienne par n

Autrement dit : $a \equiv b [n] \Leftrightarrow a \equiv r [n]$ et $b \equiv r [n]$

Propriété

 $m{a}$ congrue à $m{b}$ modulo $m{n}$ si et seulement si $m{n}$ divise $m{a} - m{b}$ (ou a - b est un multiple de n)

 $a \equiv b \ [n] \Leftrightarrow a - b \equiv 0 \ [n] \Leftrightarrow II$ existe $k \in \mathbb{Z}$ tel que a - b = kn

Remarque: on a toujours $a \equiv a [n]$ et $a \equiv 0 [1]$

Exemples: 136 et 41 sont-ils congrus modulo 5?

Réponses : a. Méthode 1 On calcule la différence : 136 - 41 = 95 qui est bien un multiple de 5,

donc ils sont congrus modulo 5

b. Méthode 2 $136 \equiv 1$ [5] et $41 \equiv 1$ [5]: même reste, ils sont congrus modulo 5

On peut faire des « chaînes » de congruences en rajoutant ou en enlevant n autant de fois qu'on veut

Ex: $35 \equiv 3 \ [8] \equiv 11[8] \equiv 19[8]$ ou $35 \equiv -5 \ [8] \equiv -13 \ [8]$ etc...

Ce qui permet de trouver le b dans l'intervalle qu'on veut

b. Opérations

Règles d'opérations

Si
$$a \equiv b [n]$$
 on a : • $a + c \equiv b + c [n]$

$$+c \equiv b+c [n]$$
 Si $a \equiv r [n]$ et $b \equiv s [n]$ on a: • $a+b \equiv r+s [n]$

•
$$ab \equiv rs[n]$$

•
$$a^p \equiv b^p [n]$$

• $a \times c \equiv b \times c [n]$

Les congruences <u>ne marchent pas avec la division</u> (nombres entiers obligent)

Exemples:

75
$$\equiv$$
 5 [7] et 44 \equiv 2 [7] \Rightarrow Addition 75 + 44 \equiv 5 + 2 [7] \Leftrightarrow 119 \equiv 7 [7] \equiv 0[7] (multiple de 7) Multiplication 75 \times 44 \equiv 5 \times 2 [7] \Leftrightarrow 3 300 \equiv 10 [7] \equiv 3[7] Puissance 44³ \equiv 2³ [7] \equiv 8 [7] \equiv 1[7]

On peut faire des tableaux de congruence, où on range les opérations selon les restes :

Tableau de congruences de x + 11 modulo 3

$x \equiv \cdots [3]$	0	1	2
x + 11	11	12	13
$x + 11 \equiv \cdots [3]$	2	0	1

Tableau de congruences de 7x modulo 5

$x \equiv \cdots [5]$	0	1	2	3	4
7 <i>x</i>	0	7	14	21	28
$7x \equiv \cdots [5]$	0	2	4	1	3

Quels sont les nombres x tels que x + 11 soit un multiple de 3 ?

 \Rightarrow Les nombres x = 3k + 1 avec $k \in \mathbb{Z}$

Dire, sans calculer le produit, si $7 \times 126 \equiv 2$ [5] $\Rightarrow 126 \equiv 1$ [5] donc $7 \times 126 \equiv 2$ [5]